Stein domains in Banach algebraic geometry

被引:12
|
作者
Bambozzi, Federico [1 ]
Ben-Bassat, Oren [2 ]
Kremnizer, Kobi [3 ]
机构
[1] Univ Regensburg, Fak Math, D-93040 Regensburg, Germany
[2] Univ Haifa, Math Inst, Dept Math, Haifa, Israel
[3] Radcliffe Observ Quarter, Math Inst, Woodstock Rd, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
Stein space; Berkovich space; Bornological space; Nuclear space; ANALYTIC SPACES; COHOMOLOGY; CATEGORIES; LIMITS;
D O I
10.1016/j.jfa.2018.01.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we give a homological characterization of the topology of Stein spaces over any valued base field. In particular, when working over the field of complex numbers, we obtain a characterization of the usual Euclidean (transcendental) topology of complex analytic spaces. For non-Archimedean base fields the topology we characterize coincides with the topology of the Berkovich analytic space associated to a non-Archimedean Stein algebra. Because the characterization we used is borrowed from a definition in derived geometry, this work should be read as a derived perspective on analytic geometry. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1865 / 1927
页数:63
相关论文
共 50 条
  • [21] Representations of Algebraic Domains and Algebraic L-domains by Information Systems
    Wu, Mingyuan
    Li, Qingguo
    Zhou, Xiangnan
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2014, 301 : 117 - 129
  • [22] Applications of Algebraic Combinatorics to Algebraic Geometry
    Kazhdan, David
    Ziegler, Tamar
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2021, 32 (06): : 1412 - 1428
  • [23] ON GEOMETRY OF BANACH ALGEBRAS
    THOMPSON, AC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 274 - &
  • [24] Algebraic Geometry versus Kahler geometry
    Voisin, Claire
    MILAN JOURNAL OF MATHEMATICS, 2010, 78 (01) : 85 - 116
  • [25] STEIN DOMAINS AND LIMITED HOLOMORPHIC FUNCTIONS
    HIRSCHOWITZ, A
    MATHEMATISCHE ANNALEN, 1975, 213 (02) : 185 - 193
  • [26] PSEUDOCONVEX DOMAINS - EXISTENCE OF STEIN NEIGHBORHOODS
    DIEDERICH, K
    FORNAESS, JE
    DUKE MATHEMATICAL JOURNAL, 1977, 44 (03) : 641 - 662
  • [27] Algebraic Lyapunov and Stein stability results for tensors
    Liang, Li
    Zheng, Baodong
    Tian, Yunbo
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (04): : 731 - 741
  • [28] On the geometry of Stein variational gradient descent
    Duncan, A.
    Nusken, N.
    Szpruch, L.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [29] Algebraic Geometry II
    Szabo, Szilard
    ACTA SCIENTIARUM MATHEMATICARUM, 2016, 82 (3-4): : 696 - 697
  • [30] Derived algebraic geometry
    Toen, Bertrand
    EMS SURVEYS IN MATHEMATICAL SCIENCES, 2014, 1 (02) : 153 - 240