Stein domains in Banach algebraic geometry

被引:12
|
作者
Bambozzi, Federico [1 ]
Ben-Bassat, Oren [2 ]
Kremnizer, Kobi [3 ]
机构
[1] Univ Regensburg, Fak Math, D-93040 Regensburg, Germany
[2] Univ Haifa, Math Inst, Dept Math, Haifa, Israel
[3] Radcliffe Observ Quarter, Math Inst, Woodstock Rd, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
Stein space; Berkovich space; Bornological space; Nuclear space; ANALYTIC SPACES; COHOMOLOGY; CATEGORIES; LIMITS;
D O I
10.1016/j.jfa.2018.01.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we give a homological characterization of the topology of Stein spaces over any valued base field. In particular, when working over the field of complex numbers, we obtain a characterization of the usual Euclidean (transcendental) topology of complex analytic spaces. For non-Archimedean base fields the topology we characterize coincides with the topology of the Berkovich analytic space associated to a non-Archimedean Stein algebra. Because the characterization we used is borrowed from a definition in derived geometry, this work should be read as a derived perspective on analytic geometry. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1865 / 1927
页数:63
相关论文
共 50 条