High-Throughput Deep Learning Microscopy Using Multi-Angle Super-Resolution

被引:1
|
作者
Zhang, Jizhou [1 ,2 ]
Xu, Tingfa [1 ,2 ]
Li, Xiangmin [1 ,2 ]
Zhang, Yizhou [1 ,2 ]
Chen, Yiwen [1 ,2 ]
Wang, Xin [1 ,2 ]
Wang, Shushan [1 ,2 ]
Wang, Chen [3 ]
机构
[1] Beijing Inst Technol, Sch Opt & Photon, Beijing 100081, Peoples R China
[2] Chongqing Innovat Ctr, Beijing Inst Technol, Chongqing 401120, Peoples R China
[3] Chinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Suzhou 215000, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2020年 / 12卷 / 02期
基金
中国国家自然科学基金;
关键词
High-throughput; deep learning; super-resolution; photo-realistic; WIDE-FIELD; PHASE RETRIEVAL; FOURIER; RECONSTRUCTION; IMAGE;
D O I
10.1109/JPHOT.2020.2977888
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Biomedical applications such as pathology and hematology expect microscopes with high space-bandwidth product (SBP) which is difficult to achieve with conventional microscope setup. By applying a deep neural network, we demonstrate a high spacebandwidth product microscopic technique termed multi-angle super-resolution microscopy (MASRM) to achieve high-resolution imaging with the low-magnification objective. We design a multiple-branch deep residual network which extracts high-frequency information and color information in obliquely-illuminated low-resolution input images and generates high-resolution output. To train our network, we build a well-registered dataset in which both low-resolution input and high-resolution target are real captured images. We carry out detailed experiments to demonstrate the effectiveness of MASRM and compare it with a computational imaging technique termed Fourier ptychographic microscopy (FPM). This data-driven technique unleashes the potential of traditional microscopes with low cost and has broad prospects in biomedical applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Enhanced detection of fluorescence fluctuations for high-throughput super-resolution imaging
    Weisong Zhao
    Shiqun Zhao
    Zhenqian Han
    Xiangyan Ding
    Guangwei Hu
    Liying Qu
    Yuanyuan Huang
    Xinwei Wang
    Heng Mao
    Yaming Jiu
    Ying Hu
    Jiubin Tan
    Xumin Ding
    Liangyi Chen
    Changliang Guo
    Haoyu Li
    Nature Photonics, 2023, 17 : 806 - 813
  • [32] Optical Flow Assisted Super-Resolution Ultrasound Localization Microscopy using Deep Learning
    Lee, Hyeonjik
    Oh, Seok-Hwan
    Kim, Myeong-Gee
    Kim, Young-Min
    Jung, Guil
    Bae, Hyeon-Min
    2022 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS), 2022,
  • [33] 3-D super-resolution localization microscopy using deep learning method
    Lu, Mengyang
    Zhou, Tianyang
    Liu, Xin
    OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS IX, 2020, 11190
  • [34] Super-resolution of magnetic systems using deep learning
    D. B. Lee
    H. G. Yoon
    S. M. Park
    J. W. Choi
    G. Chen
    H. Y. Kwon
    C. Won
    Scientific Reports, 13
  • [35] Omnidirectional Video Super-Resolution Using Deep Learning
    Baniya, Arbind Agrahari
    Lee, Tsz-Kwan
    Eklund, Peter W.
    Aryal, Sunil
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 540 - 554
  • [36] Super-resolution musculoskeletal MRI using deep learning
    Chaudhari, Akshay S.
    Fang, Zhongnan
    Kogan, Feliks
    Wood, Jeff
    Stevens, Kathryn J.
    Gibbons, Eric K.
    Lee, Jin Hyung
    Gold, Garry E.
    Hargreaves, Brian A.
    MAGNETIC RESONANCE IN MEDICINE, 2018, 80 (05) : 2139 - 2154
  • [37] Super-resolution of Solar Magnetograms Using Deep Learning
    Fengping Dou
    Long Xu
    Zhixiang Ren
    Dong Zhao
    Xinze Zhang
    ResearchinAstronomyandAstrophysics, 2022, 22 (08) : 220 - 231
  • [38] Super-resolution of magnetic systems using deep learning
    Lee, D. B.
    Yoon, H. G.
    Park, S. M.
    Choi, J. W.
    Chen, G.
    Kwon, H. Y.
    Won, C.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [39] Super-resolution of Solar Magnetograms Using Deep Learning
    Dou, Fengping
    Xu, Long
    Ren, Zhixiang
    Zhao, Dong
    Zhang, Xinze
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2022, 22 (08)
  • [40] Lightweight Super-Resolution Using Deep Neural Learning
    Jiang, Zhuqing
    Zhu, Honghui
    Lu, Yue
    Ju, Guodong
    Men, Aidong
    IEEE TRANSACTIONS ON BROADCASTING, 2020, 66 (04) : 814 - 823