Dispersion and collapse of wave maps

被引:45
|
作者
Bizon, P
Chmaj, T
Tabor, Z
机构
[1] Jagiellonian Univ, Inst Phys, Krakow, Poland
[2] Inst Phys Nucl, Krakow, Poland
关键词
D O I
10.1088/0951-7715/13/4/323
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study numerically the Cauchy problem for equivariant wave maps from 3 + 1 Minkowski spacetime into the 3-sphere. On the basis of numerical evidence combined with stability analysis of self-similar solutions we formulate two conjectures. The first conjecture states that singularities which are produced in the evolution of sufficiently large initial data are approached in a universal manner given by the profile of a stable self-similar solution. The second conjecture states that the codimension-one stable manifold of a self-similar solution with exactly one instability determines the threshold of singularity formation for a large class of initial data. Our results can be considered as a toy-model for some aspects of the critical behaviour in the formation of black holes. AMS classification scheme numbers: 35L67, 35L70, 35Q75.
引用
收藏
页码:1411 / 1423
页数:13
相关论文
共 50 条
  • [31] Decoherence and Wave Function Collapse
    Roland Omnès
    Foundations of Physics, 2011, 41 : 1857 - 1880
  • [32] Wave Collapse in Nonlinear Optics
    Kuznetsov, E. A.
    SELF-FOCUSING: PAST AND PRESENT: FUNDAMENTALS AND PROSPECTS, 2009, 114 : 175 - 190
  • [33] On the dynamics of scalar wave collapse
    Maslov, E. M.
    Shagalov, A. G.
    Physics Letters. Section A: General, Atomic and Solid State Physics, 239 (01):
  • [34] DAM COLLAPSE WAVE IN A RIVER
    BALLOFFET, A
    COLE, E
    BALLOFFE.AF
    JOURNAL OF THE HYDRAULICS DIVISION-ASCE, 1974, 100 (NH45): : 645 - 665
  • [35] Weak compactness of wave maps and harmonic maps
    Freire, A
    Muller, S
    Struwe, M
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (06): : 725 - 754
  • [36] Weak compactness of wave maps and harmonic maps
    Dept. of Mathematics, University of Tennessee, Knoxville, TN 37996-1300, United States
    不详
    不详
    Anna Inst Henri Poincare Annal Anal Non Lineaire, 6 (725-754):
  • [37] Collapse of the wave function in graphene
    Eroshenko, Yu N.
    PHYSICS-USPEKHI, 2013, 56 (04) : 426 - 426
  • [38] THE DYNAMICS OF LANGMUIR WAVE COLLAPSE
    MALKIN, VM
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1984, 87 (02): : 433 - 449
  • [39] COLLAPSE OF WAVE-FUNCTION
    FREDERICK, C
    FOUNDATIONS OF PHYSICS, 1976, 6 (05) : 607 - 611
  • [40] Decoherence and Wave Function Collapse
    Omnes, Roland
    FOUNDATIONS OF PHYSICS, 2011, 41 (12) : 1857 - 1880