Dispersion and collapse of wave maps

被引:45
|
作者
Bizon, P
Chmaj, T
Tabor, Z
机构
[1] Jagiellonian Univ, Inst Phys, Krakow, Poland
[2] Inst Phys Nucl, Krakow, Poland
关键词
D O I
10.1088/0951-7715/13/4/323
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study numerically the Cauchy problem for equivariant wave maps from 3 + 1 Minkowski spacetime into the 3-sphere. On the basis of numerical evidence combined with stability analysis of self-similar solutions we formulate two conjectures. The first conjecture states that singularities which are produced in the evolution of sufficiently large initial data are approached in a universal manner given by the profile of a stable self-similar solution. The second conjecture states that the codimension-one stable manifold of a self-similar solution with exactly one instability determines the threshold of singularity formation for a large class of initial data. Our results can be considered as a toy-model for some aspects of the critical behaviour in the formation of black holes. AMS classification scheme numbers: 35L67, 35L70, 35Q75.
引用
收藏
页码:1411 / 1423
页数:13
相关论文
共 50 条
  • [11] The collapse of the wave function
    GamboaEastman, S
    PHYSICS ESSAYS, 1996, 9 (03) : 440 - 443
  • [12] ON SINGULAR WAVE COLLAPSE
    MALKIN, VM
    SHAPIRO, EG
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1990, 97 (01): : 183 - 193
  • [13] ULTRASTRONG WAVE COLLAPSE
    ZAKHAROV, VE
    KOSMATOV, NE
    SHVETS, VF
    JETP LETTERS, 1989, 49 (08) : 492 - 495
  • [14] THE EFFECTS OF NORMAL DISPERSION ON COLLAPSE EVENTS
    LUTHER, GG
    NEWELL, AC
    MOLONEY, JV
    PHYSICA D, 1994, 74 (1-2): : 59 - 73
  • [15] Wildlife tourism maps and the governance of environmental collapse
    Mach, Leon
    McPherson, Brodie
    Hayes, River
    TOURISM GEOGRAPHIES, 2023, 25 (05) : 1465 - 1482
  • [16] Collapse mechanism maps for a hollow pyramidal lattice
    Pingle, S. M.
    Fleck, N. A.
    Deshpande, V. S.
    Wadley, H. N. G.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2128): : 985 - 1011
  • [17] Constrained wave equations and wave maps
    Shatah, J
    Zeng, CC
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 239 (03) : 383 - 404
  • [18] Constrained Wave Equations and Wave Maps
    Jalal Shatah
    Chongchun Zeng
    Communications in Mathematical Physics, 2003, 239 : 383 - 404
  • [19] Two Effective Degrees of Freedom Can Represent the Dominant Features of Global Rayleigh Wave Dispersion Maps
    Zhang, Han
    Ni, Sidao
    Liu, Lijun
    Schmandt, Brandon
    GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (12)
  • [20] Exponential wave maps
    Chiang, Yuan-Jen
    Yang, Yi-Hu
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (12) : 2521 - 2532