Review of Recent Deep Learning Based Methods for Image-Text Retrieval

被引:5
|
作者
Chen, Jianan [1 ]
Zhang, Lu [1 ]
Bai, Cong [2 ]
Kpalma, Kidiyo [1 ]
机构
[1] Univ Rennes, INSA Rennes, CNRS, UMR 6164,IETR, F-35000 Rennes, France
[2] Zhejiang Univ Technol, Coll Comp Sci, Hangzhou, Peoples R China
关键词
D O I
10.1109/MIPR49039.2020.00042
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Cross-modal retrieval has drawn much attention in recent years due to the diversity and the quantity of information data that exploded with the popularity of mobile devices and social media. Extracting relevant information efficiently from large-scale multi-modal data is becoming a crucial problem of information retrieval. Cross-modal retrieval aims to retrieve relevant information across different modalities. In this paper, we highlight key points of recent cross-modal retrieval approaches based on deep-learning, especially in the image-text retrieval context, and classify them into four categories according to different embedding methods. Evaluations of state-of-the-art cross-modal retrieval methods on two benchmark datasets are shown at the end of this paper.
引用
收藏
页码:171 / 176
页数:6
相关论文
共 50 条
  • [41] External Knowledge Dynamic Modeling for Image-text Retrieval
    Yang, Song
    Li, Qiang
    Li, Wenhui
    Liu, Min
    Li, Xuanya
    Liu, Anan
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 5330 - 5338
  • [42] Asymmetric bi-encoder for image-text retrieval
    Xiong, Wei
    Liu, Haoliang
    Mi, Siya
    Zhang, Yu
    MULTIMEDIA SYSTEMS, 2023, 29 (06) : 3805 - 3818
  • [43] Multiview adaptive attention pooling for image-text retrieval
    Ding, Yunlai
    Yu, Jiaao
    Lv, Qingxuan
    Zhao, Haoran
    Dong, Junyu
    Li, Yuezun
    KNOWLEDGE-BASED SYSTEMS, 2024, 291
  • [44] BIT: Improving Image-text Sentiment Analysis via Learning Bidirectional Image-text Interaction
    Xiao, Xingwang
    Pu, Yuanyuan
    Zhao, Zhengpeng
    Gu, Jinjing
    Xu, Dan
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [45] RELATION-GUIDED NETWORK FOR IMAGE-TEXT RETRIEVAL
    Yang, Yulou
    Shen, Hao
    Yang, Ming
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1856 - 1860
  • [46] Transformer Reasoning Network for Image-Text Matching and Retrieval
    Messina, Nicola
    Falchi, Fabrizio
    Esuli, Andrea
    Amato, Giuseppe
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 5222 - 5229
  • [47] Causal image-text retrieval embedded with consensus knowledge
    Liang Y.
    Liu X.
    Ma Z.
    Li Z.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2024, 46 (02): : 317 - 328
  • [48] CODER: Coupled Diversity-Sensitive Momentum Contrastive Learning for Image-Text Retrieval
    Wang, Haoran
    He, Dongliang
    Wu, Wenhao
    Xia, Boyang
    Yang, Min
    Li, Fu
    Yu, Yunlong
    Ji, Zhong
    Ding, Errui
    Wang, Jingdong
    COMPUTER VISION, ECCV 2022, PT XXXVI, 2022, 13696 : 700 - 716
  • [49] Fine-Grained Image-Text Retrieval via Discriminative Latent Space Learning
    Zheng, Min
    Wang, Wen
    Li, Qingyong
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 (28) : 643 - 647
  • [50] Learning Multi-view Embedding in Joint Space for Bidirectional Image-Text Retrieval
    Ran, Lu
    Wang, Wenmin
    2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2017,