Review of Recent Deep Learning Based Methods for Image-Text Retrieval

被引:5
|
作者
Chen, Jianan [1 ]
Zhang, Lu [1 ]
Bai, Cong [2 ]
Kpalma, Kidiyo [1 ]
机构
[1] Univ Rennes, INSA Rennes, CNRS, UMR 6164,IETR, F-35000 Rennes, France
[2] Zhejiang Univ Technol, Coll Comp Sci, Hangzhou, Peoples R China
关键词
D O I
10.1109/MIPR49039.2020.00042
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Cross-modal retrieval has drawn much attention in recent years due to the diversity and the quantity of information data that exploded with the popularity of mobile devices and social media. Extracting relevant information efficiently from large-scale multi-modal data is becoming a crucial problem of information retrieval. Cross-modal retrieval aims to retrieve relevant information across different modalities. In this paper, we highlight key points of recent cross-modal retrieval approaches based on deep-learning, especially in the image-text retrieval context, and classify them into four categories according to different embedding methods. Evaluations of state-of-the-art cross-modal retrieval methods on two benchmark datasets are shown at the end of this paper.
引用
收藏
页码:171 / 176
页数:6
相关论文
共 50 条
  • [21] Dynamic Contrastive Distillation for Image-Text Retrieval
    Rao, Jun
    Ding, Liang
    Qi, Shuhan
    Fang, Meng
    Liu, Yang
    Shen, Li
    Tao, Dacheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8383 - 8395
  • [22] Semantic Completion and Filtration for Image-Text Retrieval
    Yang, Song
    Li, Qiang
    Li, Wenhui
    Li, Xuan-Ya
    Jin, Ran
    Lv, Bo
    Wang, Rui
    Liu, Anan
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2023, 19 (04)
  • [23] Scoping Review on Image-Text Multimodal Machine Learning Models
    Rashid, Maisha Binte
    Rivas, Pablo
    2023 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE, CSCI 2023, 2023, : 186 - 192
  • [24] Probability Distribution Representation Learning for Image-Text Cross-Modal Retrieval
    Yang C.
    Liu L.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (05): : 751 - 759
  • [25] HADA: A Graph-Based Amalgamation Framework in Image-Text Retrieval
    Nguyen, Manh-Duy
    Nguyen, Binh T.
    Gurrin, Cathal
    ADVANCES IN INFORMATION RETRIEVAL, ECIR 2023, PT I, 2023, 13980 : 717 - 731
  • [26] Feature Interaction Based Graph Convolutional Networks for Image-Text Retrieval
    Hu, Yongli
    Gao, Feili
    Sun, Yanfeng
    Gao, Junbin
    Yin, Baocai
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT III, 2021, 12893 : 217 - 229
  • [27] Cross-modal Contrastive Learning for Generalizable and Efficient Image-text Retrieval
    Lu, Haoyu
    Huo, Yuqi
    Ding, Mingyu
    Fei, Nanyi
    Lu, Zhiwu
    MACHINE INTELLIGENCE RESEARCH, 2023, 20 (04) : 569 - 582
  • [28] Cross-modal Contrastive Learning for Generalizable and Efficient Image-text Retrieval
    Haoyu Lu
    Yuqi Huo
    Mingyu Ding
    Nanyi Fei
    Zhiwu Lu
    Machine Intelligence Research, 2023, 20 : 569 - 582
  • [29] Learning Hierarchical Semantic Correspondences for Cross-Modal Image-Text Retrieval
    Zeng, Sheng
    Liu, Changhong
    Zhou, Jun
    Chen, Yong
    Jiang, Aiwen
    Li, Hanxi
    PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2022, 2022, : 239 - 248
  • [30] Parameter-Efficient Transfer Learning for Remote Sensing Image-Text Retrieval
    Yuan, Yuan
    Zhan, Yang
    Xiong, Zhitong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61