Estimates for eigenvalues of the poly-Laplacian with any order in a unit sphere

被引:19
|
作者
Cheng, Qing-Ming [1 ]
Ichikawa, Takamichi [1 ]
Mametsuka, Shinji [1 ]
机构
[1] Saga Univ, Fac Sci & Engn, Dept Math, Saga 8408502, Japan
关键词
BOUNDS; INEQUALITIES; COMMUTATORS; OPERATOR;
D O I
10.1007/s00526-009-0240-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study eigenvalues of the poly-Laplacian with any order on a domain in an n-dimensional unit sphere and obtain estimates for eigenvalues. In particular, the optimal result of Cheng and Yang (Math Ann 331:445-460, 2005) is included in our ones. In order to prove our results, we introduce 2(l + 1) functions a (i) and b (i) , for i = 0, 1, . . . , l and two operators mu and eta. First of all, we study properties of functions a (i) and b (i) and the operators mu and eta. By making use of these properties and introducing k free constants, we obtain estimates for eigenvalues.
引用
收藏
页码:507 / 523
页数:17
相关论文
共 50 条
  • [31] ESTIMATES OF EIGENVALUES OF THE LAPLACIAN BY A REDUCED NUMBER OF SUBSETS
    Funano, Kei
    ISRAEL JOURNAL OF MATHEMATICS, 2017, 217 (01) : 413 - 433
  • [32] Estimates of eigenvalues of the Laplacian by a reduced number of subsets
    Kei Funano
    Israel Journal of Mathematics, 2017, 217 : 413 - 433
  • [33] EXISTENCE, NONEXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS FOR THE POLY-LAPLACIAN AND NONLINEARITIES WITH ZEROS
    Iturriaga, Leonelo
    Massa, Eugenio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (08) : 3831 - 3850
  • [34] ESTIMATES OF THE EIGENVALUES OF THE LAPLACIAN ON A FINITE TOPOLOGICAL NETWORK
    NICAISE, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 303 (08): : 343 - 346
  • [35] Existence and multiplicity of nontrivial solutions for poly-Laplacian systems on finite graphs
    Xuechen Zhang
    Xingyong Zhang
    Junping Xie
    Xiaoli Yu
    Boundary Value Problems, 2022
  • [36] Existence and multiplicity of nontrivial solutions for poly-Laplacian systems on finite graphs
    Zhang, Xuechen
    Zhang, Xingyong
    Xie, Junping
    Yu, Xiaoli
    BOUNDARY VALUE PROBLEMS, 2022, 2022 (01)
  • [37] Lower order eigenvalues of Dirichlet Laplacian
    Sun, Hejun
    Cheng, Qing-Ming
    Yang, Hongcang
    MANUSCRIPTA MATHEMATICA, 2008, 125 (02) : 139 - 156
  • [38] Lower order eigenvalues of Dirichlet Laplacian
    Hejun Sun
    Qing-Ming Cheng
    Hongcang Yang
    manuscripta mathematica, 2008, 125 : 139 - 156
  • [39] ESTIMATES FOR THE EIGENVALUES OF HILLS EQUATION AND APPLICATIONS FOR THE EIGENVALUES OF THE LAPLACIAN ON TOROIDAL SURFACES
    BEEKMANN, B
    LOKES, H
    MANUSCRIPTA MATHEMATICA, 1990, 68 (03) : 295 - 308
  • [40] ON THE CONSECUTIVE EIGENVALUES OF THE LAPLACIAN OF A COMPACT MINIMAL SUBMANIFOLD IN A SPHERE
    LEUNG, PF
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1991, 50 : 409 - 416