Estimates for eigenvalues of the poly-Laplacian with any order in a unit sphere

被引:19
|
作者
Cheng, Qing-Ming [1 ]
Ichikawa, Takamichi [1 ]
Mametsuka, Shinji [1 ]
机构
[1] Saga Univ, Fac Sci & Engn, Dept Math, Saga 8408502, Japan
关键词
BOUNDS; INEQUALITIES; COMMUTATORS; OPERATOR;
D O I
10.1007/s00526-009-0240-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study eigenvalues of the poly-Laplacian with any order on a domain in an n-dimensional unit sphere and obtain estimates for eigenvalues. In particular, the optimal result of Cheng and Yang (Math Ann 331:445-460, 2005) is included in our ones. In order to prove our results, we introduce 2(l + 1) functions a (i) and b (i) , for i = 0, 1, . . . , l and two operators mu and eta. First of all, we study properties of functions a (i) and b (i) and the operators mu and eta. By making use of these properties and introducing k free constants, we obtain estimates for eigenvalues.
引用
收藏
页码:507 / 523
页数:17
相关论文
共 50 条
  • [21] Estimates on Eigenvalues of Laplacian
    Qing-Ming Cheng
    Hongcang Yang
    Mathematische Annalen, 2005, 331 : 445 - 460
  • [22] Estimates for eigenvalues of the Laplacian
    Kroger, P
    POTENTIAL THEORY - ICPT 94, 1996, : 377 - 382
  • [23] Estimates on eigenvalues of Laplacian
    Cheng, QM
    Yang, HC
    MATHEMATISCHE ANNALEN, 2005, 331 (02) : 445 - 460
  • [24] Rates of convergence for regression with the graph poly-Laplacian
    Trillos, Nicolas Garcia
    Murray, Ryan
    Thorpe, Matthew
    SAMPLING THEORY SIGNAL PROCESSING AND DATA ANALYSIS, 2023, 21 (02):
  • [25] ESTIMATES FOR SUMS OF EIGENVALUES OF THE LAPLACIAN
    KROGER, P
    JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 126 (01) : 217 - 227
  • [26] Estimates for the first eigenvalues of the affine Laplacian
    Guangyue Huang
    Mingfang Zhu
    Archiv der Mathematik, 2023, 121 : 77 - 87
  • [27] Estimates for the first eigenvalues of the affine Laplacian
    Huang, Guangyue
    Zhu, Mingfang
    ARCHIV DER MATHEMATIK, 2023, 121 (01) : 77 - 87
  • [28] Estimates for eigenvalues of weighted Laplacian and weighted p-Laplacian
    Du, Feng
    Mao, Jing
    Wang, Qiaoling
    Xia, Changyu
    HIROSHIMA MATHEMATICAL JOURNAL, 2021, 51 (03) : 335 - 353
  • [29] ESTIMATES OF THE GAPS BETWEEN CONSECUTIVE EIGENVALUES OF LAPLACIAN
    Chen, Daguang
    Zheng, Tao
    Yang, Hongcang
    PACIFIC JOURNAL OF MATHEMATICS, 2016, 282 (02) : 293 - 311
  • [30] SHARPER ESTIMATES ON THE EIGENVALUES OF DIRICHLET FRACTIONAL LAPLACIAN
    Yolcu, Selma Yildirim
    Yolcu, Tuerkay
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (05) : 2209 - 2225