Optimization of Computationally Expensive Simulations with Gaussian Processes and Parameter Uncertainty: Application to Cardiovascular Surgery

被引:0
|
作者
Xie, Jing [1 ]
Frazier, Peter I. [1 ]
Sankaran, Sethuraman [2 ]
Marsden, Alison [2 ]
Elmohamed, Saleh [3 ]
机构
[1] Cornell Univ, Sch Operat Res & Informat Engn, Ithaca, NY 14853 USA
[2] Univ Calif San Diego, Dept Mech & Aerosp Engn, San Diego, CA 92121 USA
[3] Cornell Univ, Ctr Appl Math, Dept Mol Biol & Genet, Dept Biomed Engn, Ithaca, NY 14853 USA
来源
2012 50TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON) | 2012年
关键词
GLOBAL OPTIMIZATION; FRAMEWORK; SELECTION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In many applications of simulation-based optimization, the random output variable whose expectation is being optimized is a deterministic function of a low-dimensional random vector. This deterministic function is often expensive to compute, making simulation-based optimization difficult. Motivated by an application in the design of bypass grafts for cardiovascular surgery with uncertainty about input parameters, we use Bayesian methods to design an algorithm that exploits this random vector's low-dimensionality to improve performance.
引用
收藏
页码:406 / 413
页数:8
相关论文
共 49 条
  • [21] Fabrication uncertainty guided design optimization of a photonic crystal cavity by using Gaussian processes
    Plock, Marnhias
    Binkowski, Felix
    Zschiedrich, Lin
    Schneider, Philipp-Immanuel
    Burger, Sven
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2024, 41 (04) : 850 - 862
  • [22] Dynamic modeling and optimization of sustainable algal production with uncertainty using multivariate Gaussian processes
    Bradford, Eric
    Schweidtmann, Artur M.
    Zhang, Dongda
    Jing, Keju
    del Rio-Chanona, Ehecatl Antonio
    COMPUTERS & CHEMICAL ENGINEERING, 2018, 118 : 143 - 158
  • [23] Optical network physical layer parameter optimization for digital backpropagation using Gaussian processes
    Nevin, Josh W.
    Sillekens, Eric
    Sohanpal, Ronit
    Galdino, Lidia
    Nallaperuma, Sam
    Bayvel, Polina
    Savory, Seb J.
    DATA-CENTRIC ENGINEERING, 2023, 4 (01):
  • [24] Combining Gaussian processes, mutual information and a genetic algorithm for multi-target optimization of expensive-to-evaluate functions
    Peremezhney, N.
    Hines, E.
    Lapkin, A.
    Connaughton, C.
    ENGINEERING OPTIMIZATION, 2014, 46 (11) : 1593 - 1607
  • [25] Fuzzy Clustering Based Gaussian Process Model for Large Training Set and Its Application in Expensive Evolutionary Optimization
    Liu, Wudong
    Zhang, Qingfu
    Tsang, Edward
    Virginas, Botond
    2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5, 2009, : 2411 - +
  • [26] Efficient Calculation of Uncertainty Propagation with an Application in Robust Optimization of Forming Processes
    Nejadseyfi, O.
    Geijselaers, H. J. M.
    van den Boogaard, A. H.
    PROCEEDINGS OF THE 20TH INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING (ESAFORM 2017), 2017, 1896
  • [27] Parameter Estimation for Gaussian Processes with Application to the Model with Two Independent Fractional Brownian Motions
    Mishura, Yuliya
    Ralchenko, Kostiantyn
    Shklyar, Sergiy
    STOCHASTIC PROCESSES AND APPLICATIONS (SPAS2017), 2018, 271 : 123 - 146
  • [28] Application Research of Parameter Uncertainty Optimization Method in Steering Detection and Correction System
    Yang, Jiahao
    Xu, Ming
    Ma, Longhua
    Chang, Fangle
    Wu, Wenxiang
    IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION, 2024, 8 : 665 - 670
  • [29] Application of Malliavin calculus to long-memory parameter estimation for non-Gaussian processes
    Chronopoulou, Alexandra
    Tudor, Ciprian A.
    Viens, Frederi G.
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (11-12) : 663 - 666
  • [30] Efficient Emulation of Radiative Transfer Codes Using Gaussian Processes and Application to Land Surface Parameter Inferences
    Gomez-Dans, Jose Luis
    Lewis, Philip Edward
    Disney, Mathias
    REMOTE SENSING, 2016, 8 (02)