Optimization of Computationally Expensive Simulations with Gaussian Processes and Parameter Uncertainty: Application to Cardiovascular Surgery

被引:0
|
作者
Xie, Jing [1 ]
Frazier, Peter I. [1 ]
Sankaran, Sethuraman [2 ]
Marsden, Alison [2 ]
Elmohamed, Saleh [3 ]
机构
[1] Cornell Univ, Sch Operat Res & Informat Engn, Ithaca, NY 14853 USA
[2] Univ Calif San Diego, Dept Mech & Aerosp Engn, San Diego, CA 92121 USA
[3] Cornell Univ, Ctr Appl Math, Dept Mol Biol & Genet, Dept Biomed Engn, Ithaca, NY 14853 USA
来源
2012 50TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON) | 2012年
关键词
GLOBAL OPTIMIZATION; FRAMEWORK; SELECTION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In many applications of simulation-based optimization, the random output variable whose expectation is being optimized is a deterministic function of a low-dimensional random vector. This deterministic function is often expensive to compute, making simulation-based optimization difficult. Motivated by an application in the design of bypass grafts for cardiovascular surgery with uncertainty about input parameters, we use Bayesian methods to design an algorithm that exploits this random vector's low-dimensionality to improve performance.
引用
收藏
页码:406 / 413
页数:8
相关论文
共 49 条
  • [11] Percentile Optimization for Markov Decision Processes with Parameter Uncertainty
    Delage, Erick
    Mannor, Shie
    OPERATIONS RESEARCH, 2010, 58 (01) : 203 - 213
  • [12] Efficient parallel surrogate optimization algorithm and framework with application to parameter calibration of computationally expensive three-dimensional hydrodynamic lake PDE models
    Xia, Wei
    Shoemaker, Christine
    Akhtar, Taimoor
    Manh-Tuan Nguyen
    ENVIRONMENTAL MODELLING & SOFTWARE, 2021, 135
  • [13] Assessing the Effect of Hydrodynamic Parameter Uncertainty on AUV Performance with Gaussian Processes
    Kleiber, Justin T.
    Miller, Lakshmi M.
    Krauss, Stephen
    Stilwell, Daniel J.
    Brizzolara, Stefano
    OCEANS 2021: SAN DIEGO - PORTO, 2021,
  • [14] Robust Optimization With Parameter and Model Uncertainties Using Gaussian Processes
    Zhang, Yanjun
    Li, Mian
    Zhang, Jun
    Li, Guoshu
    JOURNAL OF MECHANICAL DESIGN, 2016, 138 (11)
  • [15] ROBUST OPTIMIZATION WITH PARAMETER AND MODEL UNCERTAINTIES USING GAUSSIAN PROCESSES
    Zhang, Yanjun
    Li, Mian
    Zhang, Jun
    Li, Guoshu
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2016, VOL 2B, 2016, : 573 - 585
  • [16] High-Dimensional Reliability- Based Design Optimization Involving Highly Nonlinear Constraints and Computationally Expensive Simulations
    Li, Meng
    Sadoughi, Mohammadkazem
    Hu, Chao
    Hu, Zhen
    Eshghi, Amin Toghi
    Lee, Soobum
    JOURNAL OF MECHANICAL DESIGN, 2019, 141 (05)
  • [17] S-parameter Modeling and Optimization using Deep Gaussian Processes
    Garbuglia, Federico
    Spina, Domenico
    Deschrijver, Dirk
    Couckuyt, Ivo
    Dhaene, Tom
    2022 24TH INTERNATIONAL MICROWAVE AND RADAR CONFERENCE (MIKON), 2022,
  • [18] Robust Tolerance Optimization for Internal Combustion Engines Under Parameter and Model Uncertainties Considering Metamodeling Uncertainty From Gaussian Processes
    Zhang, Yanjun
    Li, Mian
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2018, 18 (04)
  • [19] ROBUST OPTIMIZATION WITH PARAMETER AND MODEL UNCERTAINTIES USING GAUSSIAN PROCESSES WITH LIMITED SAMPLES
    Zhang, Yanjun
    Li, Mian
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2017, VOL 2B, 2017,