PERIODIC SOLUTIONS FOR A KIND OF RAYLEIGH EQUATION WITH TWO DEVIATING ARGUMENTS

被引:0
|
作者
Wu, Yuanheng [1 ]
Xiao, Bing [2 ]
Zhang, Hong [2 ]
机构
[1] Guangdong Univ Foreign Studies, Coll Continuing Educ, Guangzhou 510420, Guangdong, Peoples R China
[2] Hunan Univ Arts & Sci, Dept Math, Changde 415000, Hunan, Peoples R China
关键词
Rayleigh equation; deviating argument; periodic solution; coincidence degree;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the coincidence degree theory to establish new results on the existence of T-periodic solutions for the Rayleigh equation with two deviating arguments of the form x '' + f(x(t), x'(t)) + g(1)(t, x(t - T-1(t))) + g(2)(t, x(t - T-2(t))) = p(t).
引用
收藏
页数:11
相关论文
共 50 条
  • [41] New results on periodic solutions for a kind of Rayleigh equation
    Mei-Lan Tang
    Xin-Ge Liu
    Xin-Bi Liu
    Applications of Mathematics, 2009, 54 : 79 - 85
  • [42] New results on periodic solutions for a kind of Rayleigh equation
    Tang, Mei-Lan
    Liu, Xin-Ge
    Liu, Xin-Bi
    APPLICATIONS OF MATHEMATICS, 2009, 54 (01) : 79 - 85
  • [43] Existence and uniqueness of periodic solutions for a kind of Lienard equation with a deviating argument
    Liu, Bingwen
    Huang, Lihong
    APPLIED MATHEMATICS LETTERS, 2008, 21 (01) : 56 - 62
  • [44] Periodic solutions for prescribed mean curvature Rayleigh equation with a deviating argument
    Jin Li
    Jianlin Luo
    Yun Cai
    Advances in Difference Equations, 2013
  • [45] Periodic solutions for a kind of second-order neutral differential systems with deviating arguments
    Lu, SP
    Ge, WG
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 156 (03) : 719 - 732
  • [46] Periodic solutions for prescribed mean curvature Rayleigh equation with a deviating argument
    Li, Jin
    Luo, Jianlin
    Cai, Yun
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [47] Periodic solutions for p-Laplacian differential equation with multiple deviating arguments
    Cheung, WS
    Ren, JL
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 62 (04) : 727 - 742
  • [48] Periodic Solutions for a Kind of Third Order Functional Differential Equation with a Deviating Argument
    Li Ju-chen
    Zhuo Xiang-lai
    PROCEEDINGS OF THE 6TH CONFERENCE OF BIOMATHEMATICS, VOLS I AND II: ADVANCES ON BIOMATHEMATICS, 2008, : 300 - 304
  • [49] Periodic solutions to a p-Laplacian neutral Rayleigh equation with deviating argument
    Bo Du
    Xueping Hu
    Applications of Mathematics, 2011, 56 : 253 - 264
  • [50] Periodic solutions for Rayleigh type p-Laplacian equation with a deviating argument
    Xiao, Bing
    Liu, Bingwen
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (01) : 16 - 22