PERIODIC SOLUTIONS FOR A KIND OF RAYLEIGH EQUATION WITH TWO DEVIATING ARGUMENTS

被引:0
|
作者
Wu, Yuanheng [1 ]
Xiao, Bing [2 ]
Zhang, Hong [2 ]
机构
[1] Guangdong Univ Foreign Studies, Coll Continuing Educ, Guangzhou 510420, Guangdong, Peoples R China
[2] Hunan Univ Arts & Sci, Dept Math, Changde 415000, Hunan, Peoples R China
关键词
Rayleigh equation; deviating argument; periodic solution; coincidence degree;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the coincidence degree theory to establish new results on the existence of T-periodic solutions for the Rayleigh equation with two deviating arguments of the form x '' + f(x(t), x'(t)) + g(1)(t, x(t - T-1(t))) + g(2)(t, x(t - T-2(t))) = p(t).
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Some novel results of t-periodic solutions for rayleigh type equation with double deviating arguments
    Wang, Yong
    Tao, Zhengwu
    Tian, Donghong
    Ma, Xin
    Li, Mingjun
    Feng, Zonghong
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2020, 82 (01): : 55 - 68
  • [32] SOME NOVEL RESULTS OF T-PERIODIC SOLUTIONS FOR RAYLEIGH TYPE EQUATION WITH DOUBLE DEVIATING ARGUMENTS
    Wang, Yong
    Tao, Zhengwu
    Tian, Donghong
    Ma, Xin
    Li, Mingjun
    Feng, Zonghong
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2020, 82 (01): : 55 - 68
  • [33] Periodic Solutions for Impulsive Differential Equation with Delays and Deviating Arguments
    梁京成
    何延生
    延边大学学报(自然科学版), 2011, (04) : 298 - 302
  • [34] Periodic solutions of neutral differential equation with multiple deviating arguments
    Lu, SP
    Ge, WG
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 156 (03) : 705 - 717
  • [35] Periodic solutions for Lienard type p-Laplacian equation with two deviating arguments
    Wang, Lijuan
    Shao, Jianying
    Meng, Hua
    Xiao, Bing
    Long, Fei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 224 (02) : 751 - 758
  • [36] New results of periodic solutions for a Rayleigh equation with a deviating argument
    Yong Wang
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60 : 583 - 593
  • [37] New results of periodic solutions for a Rayleigh equation with a deviating argument
    Wang, Yong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (04): : 583 - 593
  • [38] A Priori Bounds for Periodic Solutions of a Kind of Second Order Neutral Functional Differential Equation with Multiple Deviating Arguments
    Shi Ping Lu
    Wei Gao Ge
    Acta Mathematica Sinica, 2005, 21 : 1309 - 1314
  • [39] A Priori Bounds for Periodic Solutions of a Kind of Second Order Neutral Functional Differential Equation with Multiple Deviating Arguments
    Shi Ping LU Department of Mathematics
    ActaMathematicaSinica(EnglishSeries), 2005, 21 (06) : 1309 - 1314
  • [40] A priori bounds for periodic solutions of a kind of second order neutral functional differential equation with multiple deviating arguments
    Lu, SP
    Ge, WG
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (06) : 1309 - 1314