Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks

被引:194
|
作者
Kumar, Srinath S. [1 ]
Abraham, Dulcy M. [1 ]
Jahanshahi, Mohammad R. [1 ]
Iseley, Tom [2 ]
Starr, Justin [3 ]
机构
[1] Purdue Univ, Lyles Sch Civil Engn, W Lafayette, IN 47907 USA
[2] Louisiana Tech Univ, Dept Civil Engn, Ruston, LA 71270 USA
[3] RedZone Robot, Pittsburgh, PA USA
关键词
Wastewater pipelines; Underground infrastructure; Automation; Robotics; Closed circuit television (CCTV); Convolutional neural networks; Condition assessment; Deep learning; Artificial intelligence; MORPHOLOGICAL SEGMENTATION; PIPE DEFECTS;
D O I
10.1016/j.autcon.2018.03.028
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Automated interpretation of sewer CCTV inspection videos could improve the speed, accuracy, and consistency of sewer defect reporting. Previous research has attempted to use computer vision, namely feature extraction methods for automated classification of defects in sewer CCTV images. However, feature extraction methods use pre-engineered features for classifying images, leading to poor generalization capabilities. Due to large variations in sewer images arising from differing pipe diameters, in-situ conditions (e.g., fog and grease), etc., previous automated methods suffer from poor classification performance when applied to sewer CCTV videos. This paper presents a framework that uses deep convoluted neural networks (CNNs) to classify multiple defects in sewer CCTV images. A prototype system was developed to classify root intrusions, deposits, and cracks. The CNNs were trained and tested using 12,000 images collected from over 200 pipelines. The average testing accuracy, precision and recall were 86.2%, 87.7% and 90.6%, respectively, demonstrating the viability of this approach in the automated interpretation of sewer CCTV videos.
引用
收藏
页码:273 / 283
页数:11
相关论文
共 50 条
  • [41] Solar Event Classification Using Deep Convolutional Neural Networks
    Kucuk, Ahmet
    Banda, Juan M.
    Angryk, Rafal A.
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2017, PT I, 2017, 10245 : 118 - 130
  • [42] Using Deep Convolutional Neural Networks for Earthquake and Explosion Classification
    Hong, Mingquan
    Zhang, Hongcai
    Wu, Lihua
    Chen, Jialiang
    Dai, Lijin
    Wang, Lujun
    Dong, Tengchao
    Yang, Jinling
    Fang, Lihua
    IEEE ACCESS, 2025, 13 : 56144 - 56159
  • [43] Sewer damage detection from imbalanced CCTV inspection data using deep convolutional neural networks with hierarchical classification
    Li, Duanshun
    Cong, Anran
    Guo, Shuai
    AUTOMATION IN CONSTRUCTION, 2019, 101 : 199 - 208
  • [44] RAPID DEFECT DETECTION AND CLASSIFICATION IN IMAGES USING CONVOLUTIONAL NEURAL NETWORKS
    Warren, Peter
    Ali, Hessein
    Ebrahimi, Hossein
    Ghosh, Ranajay
    PROCEEDINGS OF ASME TURBO EXPO 2021: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, VOL 4, 2021,
  • [45] Source code defect detection using deep convolutional neural networks
    Wang, Xiaomeng
    Guan, Zhibin
    Xin, Wei
    Wang, Jiajie
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2021, 61 (11): : 1267 - 1272
  • [46] Automated Classification of Lung Cancer Types from Cytological Images Using Deep Convolutional Neural Networks
    Teramoto, Atsushi
    Tsukamoto, Tetsuya
    Kiriyama, Yuka
    Fujita, Hiroshi
    BIOMED RESEARCH INTERNATIONAL, 2017, 2017
  • [47] Automated Classification of Breast Cancer Histology Images Using Deep Learning Based Convolutional Neural Networks
    Nawaz, Majid Ali
    Sewissy, Adel A.
    Soliman, Taysir Hassan A.
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2018, 18 (04): : 152 - 160
  • [48] Automated defect inspection of LED chip using deep convolutional neural network
    Hui Lin
    Bin Li
    Xinggang Wang
    Yufeng Shu
    Shuanglong Niu
    Journal of Intelligent Manufacturing, 2019, 30 : 2525 - 2534
  • [49] Automated Classification of Body MRI Sequences Using Convolutional Neural Networks
    Kim, Boah
    Mathai, Tejas Sudharshan
    Helm, Kimberly
    Mukherjee, Pritam
    Liu, Jianfei
    Summers, Ronald M.
    ACADEMIC RADIOLOGY, 2025, 32 (03) : 1192 - 1203
  • [50] Automated defect inspection of LED chip using deep convolutional neural network
    Lin, Hui
    Li, Bin
    Wang, Xinggang
    Shu, Yufeng
    Niu, Shuanglong
    JOURNAL OF INTELLIGENT MANUFACTURING, 2019, 30 (06) : 2525 - 2534