Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks

被引:194
|
作者
Kumar, Srinath S. [1 ]
Abraham, Dulcy M. [1 ]
Jahanshahi, Mohammad R. [1 ]
Iseley, Tom [2 ]
Starr, Justin [3 ]
机构
[1] Purdue Univ, Lyles Sch Civil Engn, W Lafayette, IN 47907 USA
[2] Louisiana Tech Univ, Dept Civil Engn, Ruston, LA 71270 USA
[3] RedZone Robot, Pittsburgh, PA USA
关键词
Wastewater pipelines; Underground infrastructure; Automation; Robotics; Closed circuit television (CCTV); Convolutional neural networks; Condition assessment; Deep learning; Artificial intelligence; MORPHOLOGICAL SEGMENTATION; PIPE DEFECTS;
D O I
10.1016/j.autcon.2018.03.028
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Automated interpretation of sewer CCTV inspection videos could improve the speed, accuracy, and consistency of sewer defect reporting. Previous research has attempted to use computer vision, namely feature extraction methods for automated classification of defects in sewer CCTV images. However, feature extraction methods use pre-engineered features for classifying images, leading to poor generalization capabilities. Due to large variations in sewer images arising from differing pipe diameters, in-situ conditions (e.g., fog and grease), etc., previous automated methods suffer from poor classification performance when applied to sewer CCTV videos. This paper presents a framework that uses deep convoluted neural networks (CNNs) to classify multiple defects in sewer CCTV images. A prototype system was developed to classify root intrusions, deposits, and cracks. The CNNs were trained and tested using 12,000 images collected from over 200 pipelines. The average testing accuracy, precision and recall were 86.2%, 87.7% and 90.6%, respectively, demonstrating the viability of this approach in the automated interpretation of sewer CCTV videos.
引用
收藏
页码:273 / 283
页数:11
相关论文
共 50 条
  • [31] Gender and Smile Classification using Deep Convolutional Neural Networks
    Zhang, Kaipeng
    Tan, Lianzhi
    Li, Zhifeng
    Qiao, Yu
    PROCEEDINGS OF 29TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, (CVPRW 2016), 2016, : 739 - 743
  • [32] Brain tumor classification using deep convolutional neural networks
    Nurtay, M.
    Kissina, M.
    Tau, A.
    Akhmetov, A.
    Alina, G.
    Mutovina, N.
    COMPUTER OPTICS, 2025, 49 (02) : 253 - 262
  • [33] Melanoma Cancer Classification using Deep Convolutional Neural Networks
    Cadena, Jose M.
    Perez, Noel
    Benitez, Diego
    Grijalva, Felipe
    Flores, Ricardo
    Camacho, Oscar
    Marrero-Ponce, Yovani
    2023 IEEE 13TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS, ICPRS, 2023,
  • [34] Water stress classification using Convolutional Deep Neural Networks
    Aversano, Lerina
    Bernardi, Mario Luca
    Cimitile, Marta
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2022, 28 (03) : 311 - 328
  • [35] Hyperspectral Data Classification using Deep Convolutional Neural Networks
    Salman, Mesut
    Yuksel, Seniha Esen
    2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 2129 - 2132
  • [36] Cystoscopy Image Classification Using Deep Convolutional Neural Networks
    Hashemi, Seyyed Mohammadreza
    Hassanpour, Hamid
    Kozegar, Ehsan
    Tan, Tao
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2019, 10 (01): : 193 - 205
  • [37] Nanoparticles Ordering Classification Using Deep Convolutional Neural Networks
    Amarif, Mabroukah
    Aejaal, Asmaah
    Ateeyah, Haleemah
    JOURNAL OF NANO RESEARCH, 2024, 86 : 57 - 66
  • [38] CLASSIFICATION OF DERMOSCOPY PATTERNS USING DEEP CONVOLUTIONAL NEURAL NETWORKS
    Demyanov, Sergey
    Chakravorty, Rajib
    Abedini, Mani
    Halpern, Alan
    Garnavi, Rahil
    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 364 - 368
  • [39] Space Object Classification Using Deep Convolutional Neural Networks
    Linares, Richard
    Furfaro, Roberto
    2016 19TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2016, : 1140 - 1146
  • [40] Assessment of Asteroid Classification Using Deep Convolutional Neural Networks
    Bacu, Victor
    Nandra, Constantin
    Sabou, Adrian
    Stefanut, Teodor
    Gorgan, Dorian
    AEROSPACE, 2023, 10 (09)