Maximizing Renyi Entropy Rate

被引:0
|
作者
Bunte, Christoph [1 ]
Lapidoth, Amos [1 ]
机构
[1] Swiss Fed Inst Technol, Zurich, Switzerland
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Of all univariate distributions on the nonnegative reals of a given mean, the distribution that maximizes the Renyi entropy is Lomax. But the memoryless Lomax stochastic process does not maximize the Renyi entropy rate: For Renyi orders smaller than one the supremum of the Renyi entropy rates is infinite, and for orders larger than one it is the differential Shannon entropy of the exponential distribution, which is the distribution that maximizes the differential Shannon entropy subject to these constraints. This is shown to be a special case of a much more general principle.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Physical generalizations of the Renyi entropy
    Johnson, Clifford V.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2019, 28 (07):
  • [42] The gravity dual of Renyi entropy
    Dong, Xi
    NATURE COMMUNICATIONS, 2016, 7
  • [43] Encoding Tasks and Renyi Entropy
    Bunte, Christoph
    Lapidoth, Amos
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (09) : 5065 - 5076
  • [44] Renyi extrapolation of Shannon entropy
    Zyczkowski, K
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2003, 10 (03): : 297 - 310
  • [45] Renyi entropy and conformal defect
    Bianchi, Lorenzo
    Meineri, Marco
    Myers, Robert C.
    Smolkin, Michael
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (07):
  • [46] Entrance time and Renyi entropy
    Gupta, Chinmaya
    Haydn, Nicolai
    Ko, Milton
    Rada-Mora, Erika A.
    STOCHASTICS AND DYNAMICS, 2015, 15 (04)
  • [47] The Concavity of Renyi Entropy Power
    Savare, Giuseppe
    Toscani, Giuseppe
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (05) : 2687 - 2693
  • [48] Renyi Entropy in Statistical Mechanics
    Fuentes, Jesus
    Goncalves, Jorge
    ENTROPY, 2022, 24 (08)
  • [49] On Renyi Entropy Power Inequalities
    Ram, Eshed
    Sason, Igal
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 2289 - 2293
  • [50] Minimum Renyi entropy portfolios
    Lassance, Nathan
    Vrins, Frederic
    ANNALS OF OPERATIONS RESEARCH, 2021, 299 (1-2) : 23 - 46