Minimum Renyi entropy portfolios

被引:12
|
作者
Lassance, Nathan [1 ]
Vrins, Frederic [2 ]
机构
[1] UCLouvain BE, Louvain Finance, 34 Voie Roman Pays, B-1348 Louvain La Neuve, Belgium
[2] UCLouvain BE, Louvain Finance, Ctr Operat Res & Econometr, 34 Voie Roman Pays, B-1348 Louvain La Neuve, Belgium
关键词
Portfolio selection; Shannon entropy; Ré nyi entropy; Risk measure; Information theory; Higher-order moments; Risk parity;
D O I
10.1007/s10479-019-03364-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Accounting for the non-normality of asset returns remains one of the main challenges in portfolio optimization. In this paper, we tackle this problem by assessing the risk of the portfolio through the "amount of randomness" conveyed by its returns. We achieve this using an objective function that relies on the exponential of Renyi entropy, an information-theoretic criterion that precisely quantifies the uncertainty embedded in a distribution, accounting for higher-order moments. Compared to Shannon entropy, Renyi entropy features a parameter that can be tuned to play around the notion of uncertainty. A Gram-Charlier expansion shows that it controls the relative contributions of the central (variance) and tail (kurtosis) parts of the distribution in the measure. We further rely on a non-parametric estimator of the exponential Renyi entropy that extends a robust sample-spacings estimator initially designed for Shannon entropy. A portfolio-selection application illustrates that minimizing Renyi entropy yields portfolios that outperform state-of-the-art minimum-variance portfolios in terms of risk-return-turnover trade-off. We also show how Renyi entropy can be used in risk-parity strategies.
引用
收藏
页码:23 / 46
页数:24
相关论文
共 50 条
  • [1] Minimum Rényi entropy portfolios
    Nathan Lassance
    Frédéric Vrins
    Annals of Operations Research, 2021, 299 : 23 - 46
  • [2] The absolute minimum and maximum value problem and the Renyi entropy of order α
    Alencar, MS
    Assis, FM
    ITS '98 PROCEEDINGS - SBT/IEEE INTERNATIONAL TELECOMMUNICATIONS SYMPOSIUM, VOLS 1 AND 2, 1998, : 239 - 241
  • [3] The minimum Renyi entropy output of a quantum channel is locally additive
    Gour, Gilad
    Kemp, Todd
    LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (06) : 1131 - 1155
  • [4] Some properties of Renyi entropy and Renyi entropy rate
    Golshani, Leila
    Pasha, Einollah
    Yari, Gholamhossein
    INFORMATION SCIENCES, 2009, 179 (14) : 2426 - 2433
  • [5] Fractional Renyi entropy
    Tenreiro Machado, J. A.
    Lopes, Antonio M.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (05):
  • [6] Renyi entropy and geometry
    Lee, Jeongseog
    McGough, Lauren
    Safdi, Benjamin R.
    PHYSICAL REVIEW D, 2014, 89 (12):
  • [7] Stabilizer Renyi Entropy
    Leone, Lorenzo
    Oliviero, Salvatore F. E.
    Hamma, Alioscia
    PHYSICAL REVIEW LETTERS, 2022, 128 (05)
  • [8] On the Polarization of Renyi Entropy
    Zheng, Mengfan
    Liu, Ling
    Ling, Cong
    2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 2094 - 2098
  • [9] Entanglement Renyi α entropy
    Wang, Yu-Xin
    Mu, Liang-Zhu
    Vedral, Vlatko
    Fan, Heng
    PHYSICAL REVIEW A, 2016, 93 (02)
  • [10] Supersymmetric Renyi entropy
    Nishioka, Tatsuma
    Yaakov, Itamar
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (10):