Malware Detection in Smartphone Using Hidden Markov Model

被引:6
|
作者
Xin, Kejun [1 ]
Li, Gang [1 ]
Qin, Zhongyuan [2 ,3 ]
Zhang, Qunfang [4 ]
机构
[1] Nanjing Sample Technol Co Ltd, Nanjing, Jiangsu, Peoples R China
[2] Southeast Univ, Informat Sci & Engn Sch, Nanjing, Jiangsu, Peoples R China
[3] Minist Publ Secur, Key Lab Informat Network Secur, Shanghai, Peoples R China
[4] Nanjing Inst Artillery Corps, Dept Comp, Nanjing, Jiangsu, Peoples R China
来源
2012 FOURTH INTERNATIONAL CONFERENCE ON MULTIMEDIA INFORMATION NETWORKING AND SECURITY (MINES 2012) | 2012年
关键词
smartphone malware; behavior detection; system function calls; Hidden Markov Model(HMM);
D O I
10.1109/MINES.2012.134
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In recent years, smart phone technology is becoming increasingly popular. The dangers of mobile phone malwares are becoming more and more serious. In this paper we present a new mobile smartphone malware detection scheme based on Hidden Markov Model (HMM) which is different from the traditional signature scanning methods. Firstly, we monitor the key press and system function call sequence, and take the key press as hidden state. After decoding HMM model, abnormal process can be detected using the matching rate of HMM output to the actual key press sequence. The experimental results demonstrate that the proposed method can effectively detect mobile malwares.
引用
收藏
页码:857 / 860
页数:4
相关论文
共 50 条
  • [41] Detection of Violence Based on Hidden Markov Model
    Lu Hui-qing
    Zhu Weinan
    Zhou Yuchao
    MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8, 2012, 433-440 : 4651 - 4655
  • [42] Workload hidden Markov model for anomaly detection
    Garcia, Juan Manuel
    Navarrete, Tomas
    Orozco, Carlos
    SECRYPT 2006: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY, 2006, : 56 - +
  • [43] A Hidden Markov Model for Vehicle Detection and Counting
    Miller, Nicholas
    Thomas, Mohan A.
    Eichel, Justin A.
    Mishra, Akshaya
    2015 12TH CONFERENCE ON COMPUTER AND ROBOT VISION CRV 2015, 2015, : 269 - 276
  • [44] Fight Detection Based On Hidden Markov Model
    Liu, Dejian
    Wu, Jinyong
    Wang, Yike
    Wang, Jun
    Gong, Zhuo
    2012 IEEE FIFTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2012, : 658 - 661
  • [45] Pulsar Glitch Detection with a Hidden Markov Model
    Melatos, A.
    Dunn, L. M.
    Suvorova, S.
    Moran, W.
    Evans, R. J.
    ASTROPHYSICAL JOURNAL, 2020, 896 (01):
  • [46] Intrusion detection based on Hidden Markov Model
    Yin, QB
    Shen, LR
    Zhang, RB
    Li, XY
    Wang, HQ
    2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 3115 - 3118
  • [47] Detection of hidden Markov model transient signals
    Chen, B
    Willett, P
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2000, 36 (04) : 1253 - 1268
  • [48] Behavior-based Malware Analysis using Profile Hidden Markov Models
    Ravi, Saradha
    Balakrishnan, N.
    Venkatesh, Bharath
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY (SECRYPT 2013), 2013, : 195 - 206
  • [49] Human Activity Monitoring Based on Hidden Markov Models Using a Smartphone
    San-Segundo, Ruben
    David Echeverry-Correa, Julian
    Salamea, Christian
    Manuel Pardo, Jose
    IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2016, 19 (06) : 27 - 31
  • [50] Cough Detection Using Hidden Markov Models
    Teyhouee, Aydin
    Osgood, Nathaniel D.
    SOCIAL, CULTURAL, AND BEHAVIORAL MODELING, SBP-BRIMS 2019, 2019, 11549 : 266 - 276