Malware Detection in Smartphone Using Hidden Markov Model

被引:6
|
作者
Xin, Kejun [1 ]
Li, Gang [1 ]
Qin, Zhongyuan [2 ,3 ]
Zhang, Qunfang [4 ]
机构
[1] Nanjing Sample Technol Co Ltd, Nanjing, Jiangsu, Peoples R China
[2] Southeast Univ, Informat Sci & Engn Sch, Nanjing, Jiangsu, Peoples R China
[3] Minist Publ Secur, Key Lab Informat Network Secur, Shanghai, Peoples R China
[4] Nanjing Inst Artillery Corps, Dept Comp, Nanjing, Jiangsu, Peoples R China
来源
2012 FOURTH INTERNATIONAL CONFERENCE ON MULTIMEDIA INFORMATION NETWORKING AND SECURITY (MINES 2012) | 2012年
关键词
smartphone malware; behavior detection; system function calls; Hidden Markov Model(HMM);
D O I
10.1109/MINES.2012.134
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In recent years, smart phone technology is becoming increasingly popular. The dangers of mobile phone malwares are becoming more and more serious. In this paper we present a new mobile smartphone malware detection scheme based on Hidden Markov Model (HMM) which is different from the traditional signature scanning methods. Firstly, we monitor the key press and system function call sequence, and take the key press as hidden state. After decoding HMM model, abnormal process can be detected using the matching rate of HMM output to the actual key press sequence. The experimental results demonstrate that the proposed method can effectively detect mobile malwares.
引用
收藏
页码:857 / 860
页数:4
相关论文
共 50 条
  • [31] Unknown Anomaly Detection Using Hidden Markov Model and AreaSensing Techniques
    Kurahashi, Setsuya
    Ono, Isao
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 2020, 106 (02): : 91 - 99
  • [32] Semantic event detection in sports video using Hidden Markov Model
    Kim, CS
    Bae, TM
    Choo, JH
    Jin, SH
    Ro, YM
    CISST '04: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON IMAGING SCIENCE, SYSTEMS, AND TECHNOLOGY, 2004, : 585 - 591
  • [33] Human Gait Modelling Using Hidden Markov Model For Abnormality Detection
    Chattopadhyay, Sourav
    Nandy, Anup
    PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, : 0623 - 0628
  • [34] Intrusion Detection System using Bayesian Network and Hidden Markov Model
    Devarakonda, Nagaraju
    Pamidi, Srinivasulu
    Kumari, Valli V.
    Govardhan, A.
    2ND INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION, CONTROL AND INFORMATION TECHNOLOGY (C3IT-2012), 2012, 4 : 506 - 514
  • [35] HEART SOUND DETECTION IN RESPIRATORY SOUND USING HIDDEN MARKOV MODEL
    Shamsi, Hamed
    Ozbek, I. Yucel
    2013 PROCEEDINGS OF THE 21ST EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2013,
  • [36] Hybrid fire detection using hidden Markov model and luminance map
    Wang, Liqiang
    Ye, Mao
    Ding, Jian
    Zhu, Yuanxiang
    COMPUTERS & ELECTRICAL ENGINEERING, 2011, 37 (06) : 905 - 915
  • [37] Quickest Spectrum Detection Using Hidden Markov Model for Cognitive Radio
    Chen, Zhe
    Hu, Zhen
    Qiu, Robert C.
    MILCOM 2009 - 2009 IEEE MILITARY COMMUNICATIONS CONFERENCE, VOLS 1-4, 2009, : 1907 - 1913
  • [38] A study on the optimization of ECG QRS detection using the hidden Markov model
    Kim S.-M.
    Lee H.-J.
    Min K.-J.
    Kim K.-S.
    Kwak H.-K.
    Ko Y.-S.
    Chae J.-W.
    Lee J.-E.
    Lee J.-W.
    Transactions of the Korean Institute of Electrical Engineers, 2019, 68 (11): : 1425 - 1433
  • [39] Splice sites detection by combining Markov and hidden Markov model
    Zhang, Quanwei
    Peng, Qinke
    Li, Kankan
    Kang, Xuejiao
    Li, Jing
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOLS 1-4, 2009, : 1531 - +
  • [40] Hidden Markov model based intrusion detection
    Liu, Zhi-Yong
    Qiao, Hong
    INTELLIGENCE AND SECURITY INFORMATICS, PROCEEDINGS, 2006, 3917 : 169 - 170