On nonfeasible edge sets in matching-covered graphs

被引:1
|
作者
Zhao, Xiao [1 ]
Dong, Fengming [2 ]
Chen, Sheng [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[2] Nanyang Technol Univ, Natl Inst Educ, Singapore, Singapore
基金
中国国家自然科学基金;
关键词
matching-covered graph; nonfeasible edge set; EAR-DECOMPOSITIONS; PERFECT MATCHINGS;
D O I
10.1002/jgt.22555
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
LetG=(V,E)be a matching-covered graph andXbe an edge set ofG.Xis said to be feasible if there exist two perfect matchingsM1andM2inGsuch that|M1 boolean AND X|not equivalent to|M2 boolean AND X| (mod 2). For anyV0 subset of V,Xis said to be switching-equivalent toX circle plus backward difference G(V0), where backward difference G(V0)is the set of edges inGeach of which has exactly one end inV0andA circle plus Bis the symmetric difference of two setsAandB. Lukot'ka and Rollova showed that whenGis regular and bipartite,Xis nonfeasible if and only ifXis switching-equivalent to null . This article extends Lukot'ka and Rollova's result by showing that this conclusion holds as long asGis matching-covered and bipartite. This article also studies matching-covered graphsGwhose nonfeasible edge sets are switching-equivalent to null orEand partially characterizes these matching-covered graphs in terms of their ear decompositions. Another aim of this article is to construct infinite manyr-connected andr-regular graphs of class 1 containing nonfeasible edge sets not switching-equivalent to either null orEfor an arbitrary integerrwithr >= 3, which provides a negative answer to a problem proposed by He et al.
引用
收藏
页码:192 / 208
页数:17
相关论文
共 50 条
  • [1] A characterization of nonfeasible sets in matching covered graphs
    Liu, Qinghai
    Cui, Qing
    Feng, Xing
    Lu, Fuliang
    JOURNAL OF GRAPH THEORY, 2020, 95 (04) : 509 - 526
  • [2] On generalizations of matching-covered graphs
    Szigeti, Z
    EUROPEAN JOURNAL OF COMBINATORICS, 2001, 22 (06) : 865 - 877
  • [3] EAR-DECOMPOSITIONS OF MATCHING-COVERED GRAPHS
    LOVASZ, L
    COMBINATORICA, 1983, 3 (01) : 105 - 117
  • [4] The two ear theorem on matching-covered graphs
    Szigeti, Z
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1998, 74 (01) : 104 - 109
  • [5] A note on tight cuts in matching-covered graphs
    Zhao, Xiao
    Chen, Sheng
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2021, 23 (01):
  • [6] An O(VE) Algorithm for Ear Decompositions of Matching-Covered Graphs
    De Carvalho, Marcelo H.
    Cheriyan, Joseph
    ACM TRANSACTIONS ON ALGORITHMS, 2005, 1 (02) : 324 - 337
  • [7] An O(VE) Algorithm for Ear Decompositions of Matching-Covered Graphs
    de Carvalho, Marcelo H.
    Cheriyan, Joseph
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 415 - 423
  • [8] Ear Decompositions of Matching Covered Graphs
    Marcelo H. Carvalho
    Cláudio L. Lucchesi
    U. S. R. Murty
    Combinatorica, 1999, 19 : 151 - 174
  • [9] A note on minimal matching covered graphs
    Mkrtchyan, V. V.
    DISCRETE MATHEMATICS, 2006, 306 (04) : 452 - 455
  • [10] Three matching intersection property for matching covered graphs
    Lin, Hao
    Wang, Xiumei
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2017, 19 (03):