Quantum bounds for inequalities involving marginal expectation values

被引:15
|
作者
Wolfe, Elie [1 ]
Yelin, S. F. [1 ,2 ]
机构
[1] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA
[2] Harvard Smithsonian Ctr Astrophys, ITAMP, Cambridge, MA 02138 USA
来源
PHYSICAL REVIEW A | 2012年 / 86卷 / 01期
关键词
NONLOCALITY;
D O I
10.1103/PhysRevA.86.012123
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We review and develop an algorithm to determine arbitrary quantum bounds based on the seminal work of Tsirelson [Lett. Math. Phys. 4, 93 (1980)]. The potential of this algorithm is demonstrated by both deriving marginal-involving number-valued quantum bounds and identifying a generalized class of function-valued quantum bounds. Those results facilitate an eight-dimensional volume analysis of quantum mechanics which extends the work of Cabello [Phys. Rev. A 72, 012113 (2005)]. We contrast the quantum volume defined by these bounds to that of macroscopic locality, defined by the inequalities corresponding to the first level of the hierarchy of Navascues et al. [New J. Phys. 10, 073013 (2008)], proving our function-valued quantum bounds to be more complete.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Inequalities involving upper bounds for certain matrix operators
    R. Lashkaripour
    D. Foroutannia
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2006, 116 : 325 - 336
  • [32] Inequalities involving upper bounds for certain matrix operators
    Lashkaripour, R.
    Foroutannia, D.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2006, 116 (03): : 325 - 336
  • [33] VACUUM EXPECTATION VALUES OF LOCAL QUANTUM FIELDS
    JAFFEE, AM
    SIAM REVIEW, 1967, 9 (01) : 152 - &
  • [34] Optimal quantum measurements of expectation values of observables
    Knill, Emanuel
    Ortiz, Gerardo
    Somma, Rolando D.
    PHYSICAL REVIEW A, 2007, 75 (01):
  • [35] COMPARISON OF CLASSICAL AND QUANTUM CONTINUUM EXPECTATION VALUES
    DICKINSON, AS
    SHIZGAL, B
    MOLECULAR PHYSICS, 1975, 30 (04) : 1221 - 1228
  • [36] Length expectation values in quantum Regge calculus
    Khatsymovsky, VM
    PHYSICS LETTERS B, 2004, 586 (3-4) : 411 - 419
  • [37] TRACE FORMALISM FOR QUANTUM MECHANICAL EXPECTATION VALUES
    LANGERHOLC, J
    JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (08) : 1210 - +
  • [38] COMPUTING EXPECTATION VALUES FOR MOLECULAR QUANTUM DYNAMICS
    Lasser, Caroline
    Roeblitz, Susanna
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (03): : 1465 - 1483
  • [39] Inequalities for quantum marginal problems with continuous variables
    Krbek, Michael
    Tyc, Tomas
    Vlach, Jan
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (06)
  • [40] NETWORK ENCODING COMPLEXITY: EXACT VALUES, BOUNDS, AND INEQUALITIES
    Xu, Easton Li
    Shang, Weiping
    Han, Cuangyue
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2017, 11 (03) : 567 - 594