Quantum bounds for inequalities involving marginal expectation values

被引:15
|
作者
Wolfe, Elie [1 ]
Yelin, S. F. [1 ,2 ]
机构
[1] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA
[2] Harvard Smithsonian Ctr Astrophys, ITAMP, Cambridge, MA 02138 USA
来源
PHYSICAL REVIEW A | 2012年 / 86卷 / 01期
关键词
NONLOCALITY;
D O I
10.1103/PhysRevA.86.012123
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We review and develop an algorithm to determine arbitrary quantum bounds based on the seminal work of Tsirelson [Lett. Math. Phys. 4, 93 (1980)]. The potential of this algorithm is demonstrated by both deriving marginal-involving number-valued quantum bounds and identifying a generalized class of function-valued quantum bounds. Those results facilitate an eight-dimensional volume analysis of quantum mechanics which extends the work of Cabello [Phys. Rev. A 72, 012113 (2005)]. We contrast the quantum volume defined by these bounds to that of macroscopic locality, defined by the inequalities corresponding to the first level of the hierarchy of Navascues et al. [New J. Phys. 10, 073013 (2008)], proving our function-valued quantum bounds to be more complete.
引用
收藏
页数:6
相关论文
共 50 条