Matter-wave squeezing and the generation of SU(1,1) and SU(2) coherent states via Feshbach resonances

被引:16
|
作者
Tikhonenkov, I. [1 ]
Pazy, E. [1 ]
Band, Y. B. [1 ]
Vardi, A. [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Chem, IL-84105 Beer Sheva, Israel
来源
PHYSICAL REVIEW A | 2008年 / 77卷 / 06期
关键词
D O I
10.1103/PhysRevA.77.063624
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Pair operators for boson and fermion atoms generate SU(1,1) and SU(2) Lie algebras, respectively. Consequently, the pairing of boson and fermion atoms into diatomic molecules via Feshbach resonances, produces SU(1,1) and SU(2) coherent states, making bosonic pairing the matter-wave equivalent of parametric coupling and fermion pairing equivalent to the Dicke model of quantum optics. We discuss the properties of atomic states generated in the dissociation of molecular Bose-Einstein condensates into boson or fermion constituent atoms. The SU(2) coherent states produced in dissociation into fermions give Poissonian atom-number distributions, whereas the SU(1,1) states generated in dissociation into bosons result in super-Poissonian distributions, in analogy to two-photon squeezed states. In contrast, starting from an atomic gas produces coherent number distributions for bosons and super-Poissonian distributions for fermions.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Completeness relations for SU(1,1)-coherent states
    Wünsche, A
    Vourdas, A
    GROUP 22: PROCEEDINGS OF THE XII INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS, 1998, : 479 - 483
  • [22] Time evolution of Su(1,1) coherent states
    Zalesny, J
    ACTA PHYSICA POLONICA A, 2000, 98 (1-2) : 11 - 22
  • [23] Perelomov SU(1,1) coherent superposition states
    Wang, Xiaoguang
    Yu, Rongjin
    Changsha Tiedao Xuyuan Xuebao/Journal of Changsha Railway University, 1999, 17 (02): : 865 - 868
  • [24] Intelligent states in SU(2) and SU(1,1) interferometry
    Perinová, V
    Luks, A
    Krepelka, J
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2000, 2 (02) : 81 - 89
  • [25] EXPECTATION VALUES OF SQUEEZING HAMILTONIANS IN THE SU(1, 1) COHERENT STATES
    LISOWSKI, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (23): : L1295 - L1298
  • [26] SU(2) and SU(1,1) algebra eigenstates: A unified analytic approach to coherent and intelligent states
    Brif, C
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1997, 36 (07) : 1651 - 1682
  • [27] SU (1,1) and SU (2) Perelomov number coherent states: algebraic approach for general systems
    Ojeda-Guillen, D.
    Salazar-Ramirez, M.
    Mota, R. D.
    Granados, V. D.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2016, 23 (04) : 607 - 619
  • [28] Quantum engineering and nonclassical properties of SU(1,1) and SU(2) entangled nonlinear coherent states
    Karimi, Amir
    Tavassoly, Mohammad Kazem
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2014, 31 (10) : 2345 - 2353
  • [29] The Buck-Sukumar model described in terms of su(2) ⊗ su(1,1) coherent states
    Cordeiro, F.
    Providencia, C.
    da Providencia, J.
    Nishiyama, S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (40) : 12153 - 12160
  • [30] Engineering SU(1,1) ⊗ SU(1,1) vibrational states
    Huerta Alderete, C.
    Morales Rodriguez, M. P.
    Rodriguez-Lara, B. M.
    SCIENTIFIC REPORTS, 2019, 9 (1)