The Effect of Sintering Temperature on Mesoporous Structure of WO3 Doped Tio2 Powders

被引:3
|
作者
Petrovic, Srdan [1 ]
Rozic, Ljiljana [1 ]
Stojadinovic, Stevan [2 ]
Grbic, Bosko [1 ]
Vasilic, Rastko [2 ]
Vukovic, Zorica [1 ]
Radic, Nenad [1 ]
机构
[1] Univ Belgrade, IChTM Dept Catalysis & Chem Engn, Njegoseva 12, Belgrade, Serbia
[2] Univ Belgrade, Fac Phys, Studentski Trg 12-16, Belgrade 11000, Serbia
关键词
WOx-TiO2; powders; Sintering; Mesoporous structure; Photocatalytic; degradation; Azo dye; PLASMA ELECTROLYTIC OXIDATION; SOL-GEL SYNTHESIS; PHOTOCATALYTIC DEGRADATION; SURFACE-AREA; TIO2; NITROGEN; ANATASE; TITANIUM; FILMS;
D O I
10.2298/SOS1801123P
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, WO3 doped TiO2 powders were synthesized via sol-gel method combined with a hydrothermal process. The effect of sintering temperature on mesoporous structure and catalytic activities of these powders were investigated. The physical analysis via X-ray diffraction indicates that prepared samples are a mixture of anatase and rutile TiO2 phases. X-ray peak analysis is used to evaluate the crystallite size and lattice strain by the Williamson-Hall analysis. Considering all the reflections of the anatase phase the lattice strain ranging from c = 9.505 to c = 9.548 is calculated, suggesting that microstrain decreases when calcination temperature increases. N-2 adsorption-desorption analysis shows that the surface area and pore volume decrease with increasing temperature and that WOx-TiO2 powders primarily consist of mesopores. Sintering temperature induced a change in textural properties causing a systematic shift towards larger mesopores. Simultaneously, photoactivity in decolorization of methyl orange increases with increasing calcination temperature up to 700 degrees C, followed by significant decrease with its further increase.
引用
收藏
页码:123 / 132
页数:10
相关论文
共 50 条
  • [21] Synthesis and characterization of TiO2–NiO and TiO2–WO3 nanocomposites
    P. Pandi
    C. Gopinathan
    Journal of Materials Science: Materials in Electronics, 2017, 28 : 5222 - 5234
  • [22] Sintering and electrical conductivity of doped WO3
    Makarov, VO
    Trontelj, M
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 1996, 16 (07) : 791 - 794
  • [23] Gas sensing properties of WO3 doped rutile TiO2 thick film at high operating temperature
    Jo, Sung-Eun
    Kang, Byeong-Geun
    Heo, Sungmoo
    Song, Soonho
    Kim, Yong-Jun
    CURRENT APPLIED PHYSICS, 2009, 9 (04) : E235 - E238
  • [24] Investigation of the Photochromism of WO3, TiO2, and Composite WO3-TiO2 Nanoparticles
    Belhomme, Ludovic
    Duttine, Mathieu
    Labrugere, Christine
    Coicaud, Emile
    Rougier, Aline
    Penin, Nicolas
    Dandre, Arnaud
    Ravaine, Serge
    Gaudon, Manuel
    INORGANIC CHEMISTRY, 2024, 63 (21) : 10079 - 10091
  • [25] Sintering and Electrical Conductivity of Doped WO3
    Makarov, V.O.
    Trontelj, M.
    Journal of the European Ceramic Society, 16 (07): : 791 - 794
  • [26] Preparation of WO3/TiO2 and V2O5/TiO2 powders and their catalytic performances in the SCR of NOX
    Lee, Tae Suk
    Lee, In Gyu
    Lee, Byeong Woo
    Shin, Dong Woo
    JOURNAL OF THE KOREAN CRYSTAL GROWTH AND CRYSTAL TECHNOLOGY, 2006, 16 (05): : 216 - 221
  • [27] Bicomponent WO3/TiO2 films as photoelectrodes
    Shiyanovskaya, I
    Hepel, M
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (01) : 243 - 249
  • [28] Photocatalytic WO3 and TiO2 Films on Brass
    Mashtalir, Olha
    Kurtoglu, Murat
    Pogulay, Sergey
    Gogotsi, Alexey
    Naguib, Michael
    Gogotsi, Yury
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2013, 10 (01) : 26 - 32
  • [29] Structure, properties and proton conductivity of Nafion/[(TiO2)•(WO3)0.148]ψTiO2 nanocomposite membranes
    Di Noto, Vito
    Piga, Matteo
    Lavina, Sandra
    Negro, Enrico
    Yoshida, Kensuke
    Ito, Ryosuke
    Furukawa, Takeo
    ELECTROCHIMICA ACTA, 2010, 55 (04) : 1431 - 1444
  • [30] Novel TiO2•WO3 varistor system
    Su, WB
    Wang, JF
    Chen, HC
    Wang, WX
    Zang, GZ
    Li, CP
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2003, 99 (1-3): : 461 - 464