Monte Carlo modeling and validation of a proton treatment nozzle by using the Geant4 toolkit

被引:5
|
作者
Kim, Dae-Hyun [1 ,2 ,3 ]
Kang, Young Nam [1 ]
Suh, Tae-Suk [2 ,3 ]
Shin, Jungwook [4 ]
Kim, Jong Won [5 ]
Yoo, Seung Hoon [6 ]
Park, Seyjoon [7 ]
Lee, Sang Hoon [7 ]
Cho, Sungkoo [7 ]
Shin, Dongho [7 ]
Kim, Dae Yong [7 ]
Lee, Se Byeong [7 ]
机构
[1] Catholic Univ Korea, Dept Radiat Oncol, Seoul St Marys Hosp, Coll Med, Seoul 137701, South Korea
[2] Catholic Univ Korea, Dept Biomed Engn, Coll Med, Seoul 137701, South Korea
[3] Catholic Univ Korea, Res Inst Biomed Engn, Coll Med, Seoul 137701, South Korea
[4] Univ Calif San Francisco, Helen Diller Family Comprehens Canc Ctr, Dept Radiat Oncol, San Francisco, CA 94143 USA
[5] Kwandong Univ, Dept Radiat Oncol, Myongji Hosp, Coll Med, Goyang 412270, South Korea
[6] CHA Univ, CHA Bundang Med Cente, Dept Radiat Oncol, Songnam 463712, South Korea
[7] Natl Canc Ctr, Proton Therapy Ctr, Goyang 410769, South Korea
基金
新加坡国家研究基金会;
关键词
Commissioning; Geant4; Monte Carlo simulation; Proton therapy; Validation; BEAM DELIVERY-SYSTEM; DOSE CALCULATION; SIMULATION; IMPLEMENTATION; SPACE;
D O I
10.3938/jkps.61.1125
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Modern commercial treatment planning systems for proton therapy use the pencil beam algorithm for calculating the absorbed dose. Although it is acceptable for clinical radiation treatment, the accuracy of this method is limited. Alternatively, the Monte Carlo method, which is relatively accurate in dose calculations, has been applied recently to proton therapy. To reduce the remaining uncertainty in proton therapy dose calculations, in the present study, we employed Monte Carlo simulations and the Geant4 simulation toolkit to develop a model for a of a proton treatment nozzle. The results from a Geant4-based medical application of the proton treatment nozzle were compared to the measured data. Simulations of the percentage depth dose profiles showed very good agreement within 1 mm in distal range and 3 mm in modulated width. Moreover, the lateral dose profiles showed good agreement within 3% in the central region of the field and within 10% in the penumbra regions. In this work, we proved that the Geant4 Monte Carlo model of a proton treatment nozzle could be used to the calculate proton dose distributions accurately.
引用
收藏
页码:1125 / 1130
页数:6
相关论文
共 50 条
  • [31] RADIOTHERAPY MONTE CARLO DOSIMETRY USING GATE/GEANT4: VALIDATION STUDY IN ANTHROPOMORPHIC PHANTOM
    Perrot, Y.
    Breton, V.
    Donnarieix, D.
    Maigne, L.
    RADIOTHERAPY AND ONCOLOGY, 2010, 96 : S491 - S492
  • [32] Simulation of ultrasoft X-rays induced DNA damage using the Geant4 Monte Carlo toolkit
    Tajik, Marjan
    Rozatian, Amir S. H.
    Semsarha, Farid
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2015, 342 : 258 - 265
  • [33] Validation of Monte Carlo Geant4 code for a 6 MV Varian linac
    EL Bakkali, Jaafar
    EL Bardouni, Tarek
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2017, 29 (01) : 106 - 113
  • [34] Emission of Secondary Particles From a PMMA Phantom During Proton Irradiation: A Simulation Study with the Geant4 Monte Carlo Toolkit
    Lau, A.
    Chen, Y.
    Ahmad, S.
    MEDICAL PHYSICS, 2014, 41 (06) : 346 - 346
  • [35] Development of the Monte Carlo Simulation Platform Using Geant4 for Designing Heavy Ion Therapy Beam Nozzle
    Shin, Jae-ik
    Yoo, SeungHoon
    Cho, Sungho
    Kim, Eun Ho
    Song, Yongkeun
    Jung, Won-Gyun
    MEDICAL PHYSICS, 2016, 43 (06) : 3496 - 3496
  • [36] The Geant4 Simulation Toolkit and Applications For the Geant4 Collaboration
    Apostolakis, John
    MOLECULAR IMAGING: COMPUTER RECONSTRUCTION AND PRACTICE, 2008, : 73 - 92
  • [37] Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit
    Bernal, M. A.
    Bordage, M. C.
    Brown, J. M. C.
    Davidkova, M.
    Delage, E.
    El Bitar, Z.
    Enger, S. A.
    Francis, Z.
    Guatelli, S.
    Ivanchenko, V. N.
    Karamitros, M.
    Kyriakou, I.
    Maigne, L.
    Meylan, S.
    Murakami, K.
    Okada, S.
    Payno, H.
    Perrot, Y.
    Petrovic, I.
    Pham, Q. T.
    Ristic-Fira, A.
    Sasaki, T.
    Stepan, V.
    Tran, H. N.
    Villagrasa, C.
    Incerti, S.
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2015, 31 (08): : 861 - 874
  • [38] Monte Carlo calculation of beam quality correction factors in proton beams using TOPAS/GEANT4
    Baumann, Kilian-Simon
    Kaupa, Sina
    Bach, Constantin
    Engenhart-Cabillic, Rita
    Zink, Klemens
    PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (05):
  • [39] Benchmarking a GATE/Geant4 Monte Carlo model for proton beams in magnetic fields
    Padilla-Cabal, Fatima
    Alejandro Fragoso, Jose
    Resch, Andreas Franz
    Georg, Dietmar
    Fuchs, Hermann
    MEDICAL PHYSICS, 2020, 47 (01) : 223 - 233
  • [40] Geant4 Monte Carlo simulations for the LPCTrap setup
    Rodriguez, D.
    Ban, G.
    Durand, D.
    Duval, F.
    Flechard, X.
    Lienard, E.
    Mauger, F.
    Mery, A.
    Naviliat-Cuncic, O.
    Thomas, J. -C.
    Velten, Ph.
    EUROPEAN PHYSICAL JOURNAL A, 2009, 42 (03): : 397 - 400