Characterizing trees with large Laplacian energy

被引:12
|
作者
Fritscher, Eliseu [1 ]
Hoppen, Carlos [1 ]
Rocha, Israel [1 ]
Trevisan, Vilmar [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Matemat, BR-91509900 Porto Alegre, RS, Brazil
关键词
Laplacian eigenvalues; Laplacian energy; Ordering trees; ORDERING TREES; MATCHING NUMBER; EIGENVALUES; GRAPHS; INDEX; SUM;
D O I
10.1016/j.laa.2013.01.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the problem of ordering trees according to their Laplacian energy. More precisely, given a positive integer n, we find a class of cardinality approximately root n whose elements are the n-vertex trees with largest Laplacian energy. The main tool for establishing this result is a new upper bound on the sum S-k(T) of the k largest Laplacian eigenvalues of an n-vertex tree T with diameter at least four, where k is an element of [1, .. , n}. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:20 / 49
页数:30
相关论文
共 50 条
  • [21] On the characteristic and Laplacian polynomials of trees
    Heydari, Abbas
    Taeri, Bijan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (2-3) : 661 - 669
  • [22] Characterizing proximity trees
    Bose, P
    Lenhart, W
    Liotta, G
    ALGORITHMICA, 1996, 16 (01) : 83 - 110
  • [23] On the Laplacian spectral radii of trees
    Yuan, Xi-Ying
    Shan, Hai-Ying
    Liu, Yue
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4241 - 4246
  • [24] FRACTALS, TREES AND THE NEUMANN LAPLACIAN
    EVANS, WD
    HARRIS, DJ
    MATHEMATISCHE ANNALEN, 1993, 296 (03) : 493 - 527
  • [25] Laplacian coefficient, matching polynomial and incidence energy of trees with described maximum degree
    Ya-Lei Jin
    Yeong-Nan Yeh
    Xiao-Dong Zhang
    Journal of Combinatorial Optimization, 2016, 31 : 1345 - 1372
  • [26] Laplacian coefficient, matching polynomial and incidence energy of trees with described maximum degree
    Jin, Ya-Lei
    Yeh, Yeong-Nan
    Zhang, Xiao-Dong
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (03) : 1345 - 1372
  • [27] On trees with Laplacian eigenvalue one
    Barik, S.
    Lal, A. K.
    Pati, S.
    LINEAR & MULTILINEAR ALGEBRA, 2008, 56 (06): : 597 - 610
  • [28] THE LAPLACIAN PERMANENTAL POLYNOMIAL FOR TREES
    MERRIS, R
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1982, 32 (03) : 397 - 403
  • [29] LAPLACIAN ESTRADA INDEX OF TREES
    Ilic, Aleksandar
    Zhou, Bo
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2010, 63 (03) : 769 - 776
  • [30] Ordering trees by the Laplacian coefficients
    Zhang, Xiao-Dong
    Lv, Xia-Ping
    Chen, Ya-Hong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (12) : 2414 - 2424