Laplacian coefficient, matching polynomial and incidence energy of trees with described maximum degree

被引:0
|
作者
Ya-Lei Jin
Yeong-Nan Yeh
Xiao-Dong Zhang
机构
[1] Shanghai Jiao Tong University,Department of Mathematics, MOE
[2] Academia Sinica,LSC, and SHL
来源
关键词
Laplacian coefficient; Matching polynomial; Incidence energy; Tree; Subdivision tree; 05C25; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
Let L(T,λ)=∑k=0n(-1)kck(T)λn-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}(T,\lambda )=\sum _{k=0}^n (-1)^{k}c_{k}(T)\lambda ^{n-k}$$\end{document} be the characteristic polynomial of its Laplacian matrix of a tree T. This paper studied some properties of the generating function of the coefficients sequence (c0,…,cn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(c_0, \ldots , c_n)$$\end{document} which are related with the matching polynomials of division tree of T. These results, in turn, are used to characterize all extremal trees having the minimum Laplacian coefficient generation function and the minimum incidence energy of trees with described maximum degree, respectively.
引用
收藏
页码:1345 / 1372
页数:27
相关论文
共 13 条
  • [1] Laplacian coefficient, matching polynomial and incidence energy of trees with described maximum degree
    Jin, Ya-Lei
    Yeh, Yeong-Nan
    Zhang, Xiao-Dong
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (03) : 1345 - 1372
  • [2] Laplacian spectral radius of trees with given maximum degree
    Yu, Aimei
    Lu, Mei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (8-9) : 1962 - 1969
  • [3] The Laplacian spectral radius of trees and maximum vertex degree
    Yuan, Xi-Ying
    Liu, Yue
    Han, Miaomiao
    DISCRETE MATHEMATICS, 2011, 311 (8-9) : 761 - 768
  • [4] Laplacian Spectral Radius and Maximum Degree of Trees with Perfect Matchings
    Chen, Xiaodan
    Qian, Jianguo
    GRAPHS AND COMBINATORICS, 2013, 29 (05) : 1249 - 1257
  • [5] Laplacian Spectral Radius and Maximum Degree of Trees with Perfect Matchings
    Xiaodan Chen
    Jianguo Qian
    Graphs and Combinatorics, 2013, 29 : 1249 - 1257
  • [6] Maximum energy trees with two maximum degree vertices
    Li, Xueliang
    Yao, Xiangmei
    Zhang, Jianbin
    Gutman, Ivan
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2009, 45 (04) : 962 - 973
  • [7] Maximum energy trees with two maximum degree vertices
    Xueliang Li
    Xiangmei Yao
    Jianbin Zhang
    Ivan Gutman
    Journal of Mathematical Chemistry, 2009, 45
  • [8] STARLIKE TREES WITH MAXIMUM DEGREE 4 ARE DETERMINED BY THEIR SIGNLESS LAPLACIAN SPECTRA
    Omidi, Gholam R.
    Vatandoost, Ebrahim
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2010, 20 : 274 - 290
  • [9] Maximum Energy Trees with One Maximum and One Second Maximum Degree Vertex
    Yao, Xiangmei
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2010, 64 (01) : 217 - 230
  • [10] Graphs with Maximum Laplacian-Energy-Like Invariant and Incidence Energy
    de Freitas, Maria Aguieras A.
    Gutman, Ivan
    Robbiano, Maria
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2016, 75 (02) : 331 - 342