Dimensionality Reduction of Hyperspectral Image Using Spatial-Spectral Regularized Sparse Hypergraph Embedding

被引:15
|
作者
Huang, Hong [1 ]
Chen, Meili [1 ]
Duan, Yule [1 ]
机构
[1] Chongqing Univ, Educ Minist China, Key Lab Optoelect Technol & Syst, Chongqing 400044, Peoples R China
基金
美国国家科学基金会;
关键词
hyperspectral image; dimensionality reduction; spatial-spectral feature; hypergraph embedding; sparse representation; LOW-RANK REPRESENTATION; CLASSIFICATION; INFORMATION;
D O I
10.3390/rs11091039
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Many graph embedding methods are developed for dimensionality reduction (DR) of hyperspectral image (HSI), which only use spectral features to reflect a point-to-point intrinsic relation and ignore complex spatial-spectral structure in HSI. A new DR method termed spatial-spectral regularized sparse hypergraph embedding (SSRHE) is proposed for the HSI classification. SSRHE explores sparse coefficients to adaptively select neighbors for constructing the dual sparse hypergraph. Based on the spatial coherence property of HSI, a local spatial neighborhood scatter is computed to preserve local structure, and a total scatter is computed to represent the global structure of HSI. Then, an optimal discriminant projection is obtained by possessing better intraclass compactness and interclass separability, which is beneficial for classification. Experiments on Indian Pines and PaviaU hyperspectral datasets illustrated that SSRHE effectively develops a better classification performance compared with the traditional spectral DR algorithms.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Spatial-Spectral Multiscale Sparse Unmixing for Hyperspectral Images
    Ince, Taner
    Dobigeon, Nicolas
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20 : 1 - 5
  • [42] Spatial-Spectral ConvNeXt for Hyperspectral Image Classification
    Zhu, Yimin
    Yuan, Kexin
    Zhong, Wenlong
    Xu, Linlin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 (5453-5463) : 5453 - 5463
  • [43] Spatial-spectral Compressive Sensing of Hyperspectral Image
    Wang, Zhongliang
    Feng, Yan
    Jia, Yinbiao
    2013 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2013, : 1256 - 1259
  • [44] Spatial-Spectral Transformer for Hyperspectral Image Denoising
    Li, Miaoyu
    Fu, Ying
    Zhang, Yulun
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 1, 2023, : 1368 - 1376
  • [45] SPATIAL-SPECTRAL HYPERSPECTRAL IMAGE COMPRESSIVE SENSING
    Martin, Gabriel
    Bioucas-Dias, Jose M.
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 3988 - 3991
  • [46] Spatial-Spectral Transformer for Hyperspectral Image Classification
    He, Xin
    Chen, Yushi
    Lin, Zhouhan
    REMOTE SENSING, 2021, 13 (03) : 1 - 22
  • [47] Spatial-Spectral BERT for Hyperspectral Image Classification
    Ashraf, Mahmood
    Zhou, Xichuan
    Vivone, Gemine
    Chen, Lihui
    Chen, Rong
    Majdard, Reza Seifi
    REMOTE SENSING, 2024, 16 (03)
  • [48] Learning spatial-spectral dual adaptive graph embedding for multispectral and hyperspectral image fusion
    Wang, Xuquan
    Zhang, Feng
    Zhang, Kai
    Wang, Weijie
    Dun, Xiong
    Sun, Jiande
    PATTERN RECOGNITION, 2024, 151
  • [49] Hyperspectral image land cover classification algorithm based on spatial-spectral coordination embedding
    Huang H.
    Zheng X.
    Zheng, Xinlei (zhengxl@cqu.edu.cn), 1600, SinoMaps Press (45): : 964 - 972
  • [50] Semisupervised Hypergraph Discriminant Learning for Dimensionality Reduction of Hyperspectral Image
    Luo, Fulin
    Guo, Tan
    Lin, Zhiping
    Ren, Jinchang
    Zhou, Xiaocheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 4242 - 4256