Dimensionality Reduction of Hyperspectral Image Using Spatial-Spectral Regularized Sparse Hypergraph Embedding

被引:15
|
作者
Huang, Hong [1 ]
Chen, Meili [1 ]
Duan, Yule [1 ]
机构
[1] Chongqing Univ, Educ Minist China, Key Lab Optoelect Technol & Syst, Chongqing 400044, Peoples R China
基金
美国国家科学基金会;
关键词
hyperspectral image; dimensionality reduction; spatial-spectral feature; hypergraph embedding; sparse representation; LOW-RANK REPRESENTATION; CLASSIFICATION; INFORMATION;
D O I
10.3390/rs11091039
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Many graph embedding methods are developed for dimensionality reduction (DR) of hyperspectral image (HSI), which only use spectral features to reflect a point-to-point intrinsic relation and ignore complex spatial-spectral structure in HSI. A new DR method termed spatial-spectral regularized sparse hypergraph embedding (SSRHE) is proposed for the HSI classification. SSRHE explores sparse coefficients to adaptively select neighbors for constructing the dual sparse hypergraph. Based on the spatial coherence property of HSI, a local spatial neighborhood scatter is computed to preserve local structure, and a total scatter is computed to represent the global structure of HSI. Then, an optimal discriminant projection is obtained by possessing better intraclass compactness and interclass separability, which is beneficial for classification. Experiments on Indian Pines and PaviaU hyperspectral datasets illustrated that SSRHE effectively develops a better classification performance compared with the traditional spectral DR algorithms.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Spatial-Spectral Multiple Manifold Discriminant Analysis for Dimensionality Reduction of Hyperspectral Imagery
    Shi, Guangyao
    Huang, Hong
    Liu, Jiamin
    Li, Zhengying
    Wang, Lihua
    REMOTE SENSING, 2019, 11 (20)
  • [32] Hyperspectral image segmentation using spatial-spectral graphs
    Gillis, David B.
    Bowles, Jeffrey H.
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVIII, 2012, 8390
  • [33] Hypergraph-Regularized Low-Rank Subspace Clustering Using Superpixels for Unsupervised Spatial-Spectral Hyperspectral Classification
    Xu, Jinhuan
    Fowler, James E.
    Xiao, Liang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (05) : 871 - 875
  • [34] Incremental Graph Embedding Based on Spatial-Spectral Neighbors for Hyperspectral Image Classification
    Li, Dongqing
    Cheng, Yuhu
    Wang, Xuesong
    Yu, Qiang
    IEEE ACCESS, 2018, 6 : 10996 - 11006
  • [35] Dimensionality Reduction of Hyperspectral Images With Sparse Discriminant Embedding
    Huang, Hong
    Yang, Mei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (09): : 5160 - 5169
  • [36] Spatial-Spectral Weighted and Regularized Tensor Sparse Correlation Filter for Object Tracking in Hyperspectral Videos
    Hou, Zengfu
    Li, Wei
    Zhou, Jun
    Tao, Ran
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [37] Local Constraint-Based Sparse Manifold Hypergraph Learning for Dimensionality Reduction of Hyperspectral Image
    Duan, Yule
    Huang, Hong
    Tang, Yuxiao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 613 - 628
  • [38] HYPERSPECTRAL IMAGE CLASSIFICATION USING HIERARCHICAL SPATIAL-SPECTRAL TRANSFORMER
    Song, Chao
    Mei, Shaohui
    Ma, Mingyang
    Xu, Fulin
    Zhang, Yifan
    Du, Qian
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3584 - 3587
  • [39] Hyperspectral Image Reconstruction Using a Deep Spatial-Spectral Prior
    Wang, Lizhi
    Sun, Chen
    Fu, Ying
    Kim, Min H.
    Huang, Hua
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 8024 - 8033
  • [40] Automated Hyperspectral Image Classification Using Spatial-Spectral Features
    Dhok, Shivani
    Bhurane, Ankit
    Kothari, Ashwin
    2019 6TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND INTEGRATED NETWORKS (SPIN), 2019, : 184 - 189