A multi-level spectral deferred correction method

被引:42
|
作者
Speck, Robert [1 ,2 ]
Ruprecht, Daniel [2 ]
Emmett, Matthew [3 ]
Minion, Michael [4 ]
Bolten, Matthias [5 ]
Krause, Rolf [2 ]
机构
[1] Forschungszentrum Julich, Julich Supercomp Ctr, D-52425 Julich, Germany
[2] Univ Svizzera Italiana, Inst Computat Sci, Lugano, Switzerland
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA
[4] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
[5] Univ Wuppertal, Dept Math & Sci, D-42097 Wuppertal, Germany
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
Spectral deferred corrections; Multi-level spectral deferred corrections; FAS correction; PFASST;
D O I
10.1007/s10543-014-0517-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The spectral deferred correction (SDC) method is an iterative scheme for computing a higher-order collocation solution to an ODE by performing a series of correction sweeps using a low-order timestepping method. This paper examines a variation of SDC for the temporal integration of PDEs called multi-level spectral deferred corrections (MLSDC), where sweeps are performed on a hierarchy of levels and an FAS correction term, as in nonlinear multigrid methods, couples solutions on different levels. Three different strategies to reduce the computational cost of correction sweeps on the coarser levels are examined: reducing the degrees of freedom, reducing the order of the spatial discretization, and reducing the accuracy when solving linear systems arising in implicit temporal integration. Several numerical examples demonstrate the effect of multi-level coarsening on the convergence and cost of SDC integration. In particular, MLSDC can provide significant savings in compute time compared to SDC for a three-dimensional problem.
引用
收藏
页码:843 / 867
页数:25
相关论文
共 50 条
  • [41] Multi-level method understanding using microprints
    Ducasse, Stephane
    Lanza, Michele
    Robbes, Romain
    3RD IEEE INTERNATIONAL WORKSHOP ON VISUALIZING SOFTWARE FOR UNDERSTANDING AND ANALYSIS, PROCEEEDINGS, 2005, : 33 - 38
  • [42] FBILI method for multi-level line transfer
    Kuzmanovska, O.
    Atanackovic, O.
    Faurobert, M.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 196 : 230 - 241
  • [43] Conservative multi-implicit spectral deferred correction methods for reacting gas dynamics
    Layton, AT
    Minion, ML
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 194 (02) : 697 - 715
  • [44] Multi-level spectral hypergraph partitioning with arbitrary vertex sizes
    Zien, JY
    Schlag, MDF
    Chan, PK
    1996 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN - DIGEST OF TECHNICAL PAPERS, 1996, : 201 - 204
  • [45] ANALYSIS OF SPECTRAL CHARACTERISTICS OF MULTI-LEVEL DIGITAL COMPUTING SYNTHESIZERS
    SHISHOV, SY
    YAMPURIN, NP
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1984, 27 (10): : 66 - 68
  • [46] Asymptotic Analysis of Spectral Problems in Thick Multi-Level Junctions
    Mel'nyk, T. A.
    INTEGRAL METHODS IN SCIENCE AND ENGINEERING, VOL 1: ANALYTIC METHODS, 2010, : 205 - 215
  • [47] Subspace correction multi-level methods for elliptic eigenvalue problems
    Chan, TF
    Sharapov, I
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2002, 9 (01) : 1 - 20
  • [48] Multi-level Program Analysis Method Based on Formal Method
    Li, Huaxu
    Tang, Weidong
    Liu, Meiling
    International Journal of Network Security, 2023, 25 (02) : 342 - 350
  • [49] Spectral deferred correction method for Landau-Brazovskii model with convex splitting technique
    Zhang, Donghang
    Zhang, Lei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 491
  • [50] A-stable spectral deferred correction method for nonlinear Allen-Cahn model
    Yao, Lin
    Zhang, Xindong
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 95 : 197 - 203