A multi-level spectral deferred correction method

被引:42
|
作者
Speck, Robert [1 ,2 ]
Ruprecht, Daniel [2 ]
Emmett, Matthew [3 ]
Minion, Michael [4 ]
Bolten, Matthias [5 ]
Krause, Rolf [2 ]
机构
[1] Forschungszentrum Julich, Julich Supercomp Ctr, D-52425 Julich, Germany
[2] Univ Svizzera Italiana, Inst Computat Sci, Lugano, Switzerland
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA
[4] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
[5] Univ Wuppertal, Dept Math & Sci, D-42097 Wuppertal, Germany
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
Spectral deferred corrections; Multi-level spectral deferred corrections; FAS correction; PFASST;
D O I
10.1007/s10543-014-0517-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The spectral deferred correction (SDC) method is an iterative scheme for computing a higher-order collocation solution to an ODE by performing a series of correction sweeps using a low-order timestepping method. This paper examines a variation of SDC for the temporal integration of PDEs called multi-level spectral deferred corrections (MLSDC), where sweeps are performed on a hierarchy of levels and an FAS correction term, as in nonlinear multigrid methods, couples solutions on different levels. Three different strategies to reduce the computational cost of correction sweeps on the coarser levels are examined: reducing the degrees of freedom, reducing the order of the spatial discretization, and reducing the accuracy when solving linear systems arising in implicit temporal integration. Several numerical examples demonstrate the effect of multi-level coarsening on the convergence and cost of SDC integration. In particular, MLSDC can provide significant savings in compute time compared to SDC for a three-dimensional problem.
引用
收藏
页码:843 / 867
页数:25
相关论文
共 50 条
  • [31] Multi-level nature of and multi-level approaches to leadership
    Yammarino, Francis J.
    Dansereau, Fred
    LEADERSHIP QUARTERLY, 2008, 19 (02): : 135 - 141
  • [32] Multi-level spectral Galerkin method for the Navier-Stokes equations, II: time discretization
    He, Yinnian
    Liu, Kam-Moon
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2006, 25 (04) : 403 - 433
  • [33] Multi-level Indoor Path Planning Method
    Xiong, Qing
    Zhu, Qing
    Zlatanova, Sisi
    Du, Zhiqiang
    Zhang, Yeting
    Zeng, Li Yang
    Indoor-Outdoor Seamless Modelling, Mapping and Navigation, 2015, 44 (W5): : 19 - 23
  • [34] ON THE ACCELERATION OF THE MULTI-LEVEL MONTE CARLO METHOD
    Debrabant, Kristian
    Roessler, Andreas
    JOURNAL OF APPLIED PROBABILITY, 2015, 52 (02) : 307 - 322
  • [35] The variance entropy multi-level thresholding method
    Omar A. Kittaneh
    Multimedia Tools and Applications, 2023, 82 : 43075 - 43087
  • [36] An evaluation method in multi-level error diffusion
    Miyata, K
    Saito, M
    COLOR IMAGING: DEVICE-INDEPENDENT COLOR, COLOR HARD COPY, AND GRAPHIC ARTS, 1996, 2658 : 226 - 230
  • [37] The variance entropy multi-level thresholding method
    Kittaneh, Omar A.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (28) : 43075 - 43087
  • [38] A multi-level visualization method for IT system structure
    Su, Mo
    Ma, ZhenYong
    Wang, QiLe
    Wang, JiNa
    Wei, JingFeng
    Jiang, Hong
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE OF INFORMATION AND COMMUNICATION TECHNOLOGY, 2021, 183 : 661 - 668
  • [39] Multi-level feedback suppression method on multicast
    2000, Shanghai Comp Soc, China (26):
  • [40] A Multi-Level Artificial Bee Colony Method
    Zeighami, Vahid
    Ghsemi, Mohsen
    Akbari, Reza
    2014 INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND EMBEDDED SYSTEMS (ICICES), 2014,