Accurate solution of the Dirac equation on Lagrange meshes

被引:21
|
作者
Baye, Daniel [1 ]
Filippin, Livio [1 ]
Godefroid, Michel [1 ]
机构
[1] Univ Libre Brussels, B-1050 Brussels, Belgium
来源
PHYSICAL REVIEW E | 2014年 / 89卷 / 04期
关键词
QUANTUM-MECHANICAL PROBLEMS; ATOMS;
D O I
10.1103/PhysRevE.89.043305
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Lagrange-mesh method is an approximate variational method taking the form of equations on a grid because of the use of a Gauss quadrature approximation. With a basis of Lagrange functions involving associated Laguerre polynomials related to the Gauss quadrature, the method is applied to the Dirac equation. The potential may possess a 1/r singularity. For hydrogenic atoms, numerically exact energies and wave functions are obtained with small numbers n + 1 of mesh points, where n is the principal quantum number. Numerically exact mean values of powers -2 to 3 of the radial coordinate r can also be obtained with n + 2 mesh points. For the Yukawa potential, a 15-digit agreement with benchmark energies of the literature is obtained with 50 or fewer mesh points.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] SOLUTION OF THE DIRAC-EQUATION IN A DEFORMED BAG
    HAHN, K
    GOLDFLAM, R
    WILETS, L
    PHYSICAL REVIEW D, 1983, 27 (03): : 635 - 643
  • [32] Exact solution of the Dirac equation with CP violation
    Prokopec, Tomislav
    Schmidt, Michael G.
    Weenink, Jan
    PHYSICAL REVIEW D, 2013, 87 (08):
  • [33] Algebraic solution for the vector potential in the Dirac equation
    Booth, HS
    Legg, G
    Jarvis, PD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (28): : 5667 - 5677
  • [34] On a solution to the Dirac equation with a triangular potential well
    Payod, Renebeth B.
    Saroka, Vasil A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (11)
  • [35] EXACT SOLUTION OF DIRAC EQUATION WITH A CENTRAL POTENTIAL
    KANELLOPOULOS, EJ
    KANELLOPOULOS, TV
    WILDERMUTH, K
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1972, 27 (02) : 155 - +
  • [36] The Exact Solution for the Dirac Equation with the Cornell Potential
    Trevisan, L. A.
    Mirez, Carlos
    Andrade, F. M.
    FEW-BODY SYSTEMS, 2014, 55 (8-10) : 1055 - 1056
  • [37] TRAPPING SOLUTION OF THE LORENTZ-DIRAC EQUATION
    SAWADA, T
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1992, 107 (07): : 813 - 823
  • [38] The fundamental solution of the hyperbolic Dirac-equation
    Eelbode, D
    Sommen, F
    FINITE OR INFINITE DIMENSIONAL COMPLEX ANALYSIS AND APPLICATIONS, 2004, : 345 - 359
  • [39] Solution of the Dirac Equation on the Bertotti–Robinson Metric
    Gilberto Silva-Ortigoza
    General Relativity and Gravitation, 2001, 33 : 395 - 404
  • [40] The Exact Solution for the Dirac Equation with the Cornell Potential
    L. A. Trevisan
    Carlos Mirez
    F. M. Andrade
    Few-Body Systems, 2014, 55 : 1055 - 1056