Accurate solution of the Dirac equation on Lagrange meshes

被引:21
|
作者
Baye, Daniel [1 ]
Filippin, Livio [1 ]
Godefroid, Michel [1 ]
机构
[1] Univ Libre Brussels, B-1050 Brussels, Belgium
来源
PHYSICAL REVIEW E | 2014年 / 89卷 / 04期
关键词
QUANTUM-MECHANICAL PROBLEMS; ATOMS;
D O I
10.1103/PhysRevE.89.043305
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Lagrange-mesh method is an approximate variational method taking the form of equations on a grid because of the use of a Gauss quadrature approximation. With a basis of Lagrange functions involving associated Laguerre polynomials related to the Gauss quadrature, the method is applied to the Dirac equation. The potential may possess a 1/r singularity. For hydrogenic atoms, numerically exact energies and wave functions are obtained with small numbers n + 1 of mesh points, where n is the principal quantum number. Numerically exact mean values of powers -2 to 3 of the radial coordinate r can also be obtained with n + 2 mesh points. For the Yukawa potential, a 15-digit agreement with benchmark energies of the literature is obtained with 50 or fewer mesh points.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] AN ACCURATE SOLUTION TO THE PENMAN EQUATION
    MCARTHUR, AJ
    AGRICULTURAL AND FOREST METEOROLOGY, 1990, 51 (01) : 87 - 92
  • [22] ACCURATE SPLINE SOLUTIONS OF THE RADIAL DIRAC-EQUATION
    FISCHER, CF
    PARPIA, FA
    PHYSICS LETTERS A, 1993, 179 (03) : 198 - 204
  • [23] Confined helium on Lagrange meshes
    Baye, D.
    Dohet-Eraly, J.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (47) : 31417 - 31426
  • [24] Nuclear calculations on Lagrange meshes
    Baye, D
    PROCEEDINGS OF THE XVII RCNP INTERNATIONAL SYMPOSIUM ON INNOVATIVE COMPUTATIONAL METHODS IN NUCLEAR MANY-BODY PROBLEMS: TOWARDS A NEW GENERATION OF PHYSICS IN FINITE QUANTUM SYSTEMS, 1998, : 179 - 187
  • [25] SOLUTION OF THE THOMAS-FERMI-DIRAC EQUATION
    GOMBAS, P
    GASPAR, R
    NATURE, 1951, 168 (4264) : 122 - 122
  • [26] SOLUTION OF DIRAC EQUATION WITH 2 COULOMB CENTERS
    MULLER, B
    RAFELSKI, J
    GREINER, W
    PHYSICS LETTERS B, 1973, B 47 (01) : 5 - 7
  • [27] A simpler solution of the Dirac equation in a Coulomb potential
    Goodman, B
    Ignjatovic, SR
    AMERICAN JOURNAL OF PHYSICS, 1997, 65 (03) : 214 - 221
  • [28] On the solution of the Dirac equation in de Sitter space
    Klishevich, VV
    Tyumentsev, VA
    CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (20) : 4263 - 4277
  • [29] Solution of the Dirac equation in the field of a magnetic monopole
    Torres, del Castillo, G. F.
    Cortes-Cuautli, L. C.
    Journal of Mathematical Physics, 38 (06):
  • [30] Dirac equation in Kerr geometry and its solution
    Chakrabarti, SK
    Mukhopadhyay, B
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2000, 115 (7-9): : 885 - 895