Accurate solution of the Dirac equation on Lagrange meshes

被引:21
|
作者
Baye, Daniel [1 ]
Filippin, Livio [1 ]
Godefroid, Michel [1 ]
机构
[1] Univ Libre Brussels, B-1050 Brussels, Belgium
来源
PHYSICAL REVIEW E | 2014年 / 89卷 / 04期
关键词
QUANTUM-MECHANICAL PROBLEMS; ATOMS;
D O I
10.1103/PhysRevE.89.043305
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Lagrange-mesh method is an approximate variational method taking the form of equations on a grid because of the use of a Gauss quadrature approximation. With a basis of Lagrange functions involving associated Laguerre polynomials related to the Gauss quadrature, the method is applied to the Dirac equation. The potential may possess a 1/r singularity. For hydrogenic atoms, numerically exact energies and wave functions are obtained with small numbers n + 1 of mesh points, where n is the principal quantum number. Numerically exact mean values of powers -2 to 3 of the radial coordinate r can also be obtained with n + 2 mesh points. For the Yukawa potential, a 15-digit agreement with benchmark energies of the literature is obtained with 50 or fewer mesh points.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Accurate solution of the Thomas Fenni-Dirac equation
    Umeda, K
    PHYSICAL REVIEW, 1940, 58 (01): : 92 - 93
  • [2] Computationally Efficient and Accurate Solution for Colebrook Equation Based on Lagrange Theorem
    Lamri, Ahmed A.
    Easa, Said M.
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2022, 144 (01):
  • [3] ASYMPTOTIC SOLUTION OF DIRAC EQUATION
    RUBINOW, SI
    KELLER, JB
    PHYSICAL REVIEW, 1963, 131 (06): : 2789 - &
  • [4] Direct solution of Lagrange equation set
    Key Laboratory of Geological Hazards in Three Gorges Reservoir, China Three Gorges University, Yichang 443002, China
    不详
    Yanshilixue Yu Gongcheng Xuebao, 2006, 10 (2079-2085):
  • [5] PARTICULAR SOLUTION TO LAGRANGE VARIATIONAL EQUATION
    SHPILKER, GL
    DOKLADY AKADEMII NAUK SSSR, 1978, 242 (02): : 306 - 308
  • [6] Solution of the Dirac equation for a Dirac particle in a Yukawa field
    Gulveren, B
    Demirtas, A
    Ogul, R
    PHYSICA SCRIPTA, 2001, 64 (04): : 277 - 278
  • [7] The solution of the Dirac equation with the interaction term*
    Tsai, YS
    Tsai, HM
    Tsai, PY
    Tsai, LH
    QUANTUM THEORY AND SYMMETRIES, 2004, : 431 - 436
  • [8] Structure of the Fundamental Solution of the Dirac Equation
    A. A. Beilinson
    Theoretical and Mathematical Physics, 2005, 145 : 1504 - 1510
  • [9] Solution of the Dirac Equation in Expanding Universes
    Antonio Zecca
    International Journal of Theoretical Physics, 2006, 45 : 44 - 52
  • [10] SOLUTION OF DIRAC EQUATION FOR A CLASS OF POTENTIALS
    VERBEURE, A
    ANNALES DE LA SOCIETE SCIENTIFIQUE DE BRUXELLES SERIES 1-SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1966, 80 (03): : 302 - &