NUMERICAL SIMULATION OF THE NONLINEAR SCHRODINGER EQUATION WITH MULTIDIMENSIONAL PERIODIC POTENTIALS

被引:15
|
作者
Huang, Zhongyi [1 ]
Jin, Shi [1 ,2 ]
Markowich, Peter A. [3 ,4 ]
Sparber, Christof [4 ,5 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[3] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[4] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[5] Wolfgang Pauli Inst Vienna, A-1090 Vienna, Austria
来源
MULTISCALE MODELING & SIMULATION | 2008年 / 7卷 / 02期
关键词
nonlinear Schrodinger equation; Bloch decomposition; time-splitting spectral method; Bose-Einstein condensates; Thomas-Fermi approximation; lattice potential;
D O I
10.1137/070699433
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By extending the Bloch-decomposition-based time-splitting spectral method we introduced earlier, we conduct numerical simulations of the dynamics of nonlinear Schrodinger equations subject to periodic and con. ning potentials. We consider this system as a two-scale asymptotic problem with different scalings of the nonlinearity. In particular we discuss (nonlinear) mass transfer between different Bloch bands and also present three-dimensional simulations for lattice Bose-Einstein condensates in the super fluid regime.
引用
收藏
页码:539 / 564
页数:26
相关论文
共 50 条
  • [31] Numerical Methods for the Derivative Nonlinear Schrodinger Equation
    Li, Shu-Cun
    Li, Xiang-Gui
    Shi, Fang-Yuan
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2018, 19 (3-4) : 239 - 249
  • [32] A NUMERICAL SCHEME FOR THE NONLINEAR SCHRODINGER-EQUATION
    TAHA, TR
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1991, 22 (09) : 77 - 84
  • [33] Numerical Investigation of the Nonlinear Schrodinger Equation with Saturation
    Christou, M. A.
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS '34, 2008, 1067 : 105 - 113
  • [34] REMARK ON THE PERIODIC MASS CRITICAL NONLINEAR SCHRODINGER EQUATION
    Kishimoto, Nobu
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (08) : 2649 - 2660
  • [35] ON A PERIODIC PROBLEM FOR THE NONLINEAR NONLOCAL SCHRODINGER-EQUATION
    KAIKINA, EI
    SHISHMAREV, IA
    DIFFERENTIAL EQUATIONS, 1993, 29 (11) : 1733 - 1736
  • [36] Classification of solutions of the forced periodic nonlinear Schrodinger equation
    Shlizerman, Eli
    Rom-Kedar, Vered
    NONLINEARITY, 2010, 23 (09) : 2183 - 2218
  • [37] Justification of the nonlinear Schrodinger equation in spatially periodic media
    Busch, Kurt
    Schneider, Guido
    Tkeshelashvili, Lasha
    Uecker, Hannes
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2006, 57 (06): : 905 - 939
  • [38] BIFURCATIONS OF PERIODIC ORBITS IN THE GENERALISED NONLINEAR SCHRODINGER EQUATION
    Bandara, Ravindra I.
    Giraldo, Andrus
    Broderick, Neil G. R.
    Krauskopf, Bernd
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2025, 12 (02): : 178 - 211
  • [39] Gibbs measure for the periodic derivative nonlinear Schrodinger equation
    Thomann, Laurent
    Tzvetkov, Nikolay
    NONLINEARITY, 2010, 23 (11) : 2771 - 2791
  • [40] Invariant measures for the periodic derivative nonlinear Schrodinger equation
    Genovese, Giuseppe
    Luca, Renato
    Valeri, Daniele
    MATHEMATISCHE ANNALEN, 2019, 374 (3-4) : 1075 - 1138