NUMERICAL SIMULATION OF THE NONLINEAR SCHRODINGER EQUATION WITH MULTIDIMENSIONAL PERIODIC POTENTIALS

被引:15
|
作者
Huang, Zhongyi [1 ]
Jin, Shi [1 ,2 ]
Markowich, Peter A. [3 ,4 ]
Sparber, Christof [4 ,5 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[3] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[4] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[5] Wolfgang Pauli Inst Vienna, A-1090 Vienna, Austria
来源
MULTISCALE MODELING & SIMULATION | 2008年 / 7卷 / 02期
关键词
nonlinear Schrodinger equation; Bloch decomposition; time-splitting spectral method; Bose-Einstein condensates; Thomas-Fermi approximation; lattice potential;
D O I
10.1137/070699433
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By extending the Bloch-decomposition-based time-splitting spectral method we introduced earlier, we conduct numerical simulations of the dynamics of nonlinear Schrodinger equations subject to periodic and con. ning potentials. We consider this system as a two-scale asymptotic problem with different scalings of the nonlinearity. In particular we discuss (nonlinear) mass transfer between different Bloch bands and also present three-dimensional simulations for lattice Bose-Einstein condensates in the super fluid regime.
引用
收藏
页码:539 / 564
页数:26
相关论文
共 50 条
  • [21] Numerical simulation of blow-up solutions of the vector nonlinear Schrodinger equation
    Coleman, J
    Sulem, C
    PHYSICAL REVIEW E, 2002, 66 (03): : 1 - 036701
  • [22] Numerical simulation of internal waves propagation in deep sea by nonlinear Schrodinger equation
    Song Shi-Yan
    Wang Jing
    Wang Jian-Bu
    Song Sha-Sha
    Meng Jun-Min
    ACTA PHYSICA SINICA, 2010, 59 (09) : 6339 - 6344
  • [23] Concentrating solutions of nonlinear fractional Schrodinger equation with potentials
    Shang, Xudong
    Zhang, Jihui
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (04) : 1106 - 1128
  • [24] GREENIAN APPROACH TO SOLUTION OF SCHRODINGER EQUATION FOR PERIODIC LATTICE POTENTIALS
    MINELLI, TA
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 1976, 33 (02): : 619 - 634
  • [25] On High Dimensional Schrodinger Equation with Quasi-Periodic Potentials
    Zhang, Dongfeng
    Liang, Jianli
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2017, 23 (03) : 655 - 666
  • [26] NUMERICAL DISPERSIVE SCHEMES FOR THE NONLINEAR SCHRODINGER EQUATION
    Ignat, Liviu I.
    Zuazua, Enrique
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) : 1366 - 1390
  • [27] THE NUMERICAL TREATMENT OF THE NONLINEAR SCHRODINGER-EQUATION
    SHAMARDAN, AB
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1990, 19 (07) : 67 - 73
  • [28] A NUMERICAL STUDY OF THE NONLINEAR SCHRODINGER-EQUATION
    GRIFFITHS, DF
    MITCHELL, AR
    MORRIS, JL
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1984, 45 (1-3) : 177 - 215
  • [29] NUMERICAL EXPERIENCE WITH THE NONLINEAR SCHRODINGER-EQUATION
    HERBST, BM
    MORRIS, JL
    MITCHELL, AR
    JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 60 (02) : 282 - 305
  • [30] ON NUMERICAL CHAOS IN THE NONLINEAR SCHRODINGER-EQUATION
    HERBST, BM
    ABLOWITZ, MJ
    INTEGRABLE SYSTEMS AND APPLICATIONS, 1989, 342 : 192 - 206