Multi Objective Symbolic Regression

被引:2
|
作者
Hinde, C. J. [1 ]
Chakravorti, N. [1 ]
West, A. A. [1 ]
机构
[1] Univ Loughborough, Loughborough, Leics, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1007/978-3-319-46562-3_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Symbolic regression has been a popular technique for some time. Systems typically evolve using a single objective fitness function, or where the fitness function is multi-objective the factors are combined using a weighted sum. This work uses a Non Dominated Sorting Strategy to rank the genomes. Using data derived from Swimming turns performed by elite athletes more information and better expressions can be generated than by using single, or even double objective functions. Symbolic regression, multi-objective, non dominated sorting, genetic programming.
引用
收藏
页码:481 / 494
页数:14
相关论文
共 50 条
  • [41] Constraint based induction of multi-objective regression trees
    Struyf, Jan
    Dzeroski, Saso
    KNOWLEDGE DISCOVERY IN INDUCTIVE DATABASES, 2006, 3933 : 222 - 233
  • [42] Multi-objective optimization for support vector regression parameters
    Wang, Xiaogang
    Tong, Zhen
    Wang, Fuli
    Information, Management and Algorithms, Vol II, 2007, : 194 - 196
  • [43] Symbolic Sensitivity Analysis in the Multi-Objective Optimization of CMOS Operational Amplifiers
    Sanabria-Borbon, Adriana C.
    Tlelo-Cuautle, Esteban
    de la Fraga, Luis Gerardo
    Leon-Salas, Walter D.
    PROCEEDINGS OF THE 2017 IEEE XXIV INTERNATIONAL CONFERENCE ON ELECTRONICS, ELECTRICAL ENGINEERING AND COMPUTING (INTERCON), 2017,
  • [44] A Symbolic-Numeric Approach to Multi-Objective Optimization in Manufacturing Design
    Iwane, Hidenao
    Yanami, Hitoshi
    Anai, Hirokazu
    MATHEMATICS IN COMPUTER SCIENCE, 2011, 5 (03) : 315 - 334
  • [45] Multi-level Multi-Objective Decision Problem through Fuzzy Random Regression based Objective Function
    Arbaiy, Nureize
    Watada, Junzo
    IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 557 - 563
  • [46] Symbolic Regression Metamodel Based Multi-Response Optimization of EDM Process
    Ghadai, Ranjan Kumar
    Kalita, Kanak
    Gao, Xiao-Zhi
    FME TRANSACTIONS, 2020, 48 (02): : 404 - 410
  • [47] Smooth Symbolic Regression: Transformation of Symbolic Regression into a Real-Valued Optimization Problem
    Pitzer, Erik
    Kronberger, Gabriel
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2015, 2015, 9520 : 375 - 383
  • [48] Bloat and Generalisation in Symbolic Regression
    Dick, Grant
    SIMULATED EVOLUTION AND LEARNING (SEAL 2014), 2014, 8886 : 491 - 502
  • [49] Feature Standardisation in Symbolic Regression
    Owen, Caitlin A.
    Dick, Grant
    Whigham, Peter A.
    AI 2018: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, 11320 : 565 - 576
  • [50] Symbolic-regression boosting
    Sipper, Moshe
    Moore, Jason H.
    GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2021, 22 (03) : 357 - 381