Tumor Growth Estimation via Registration of DCE-MRI Derived Tumor Specific Descriptors

被引:0
|
作者
Roque, Thais [1 ]
Papiez, Bartlomiej W. [1 ]
Kersemans, Veerle [2 ]
Smart, Sean [2 ]
Allen, Danny [2 ]
Chappell, Michael [1 ]
Schnabel, Julia A. [1 ,3 ]
机构
[1] Univ Oxford, Dept Engn Sci, Inst Biomed Engn, Oxford OX1 2JD, England
[2] Univ Oxford, Dept Oncol, Preclin Imaging Grp, Oxford OX1 2JD, England
[3] Kings Coll London, Div Imaging Sci & Biomed Engn, Dept Biomed Engn, London WC2R 2LS, England
基金
英国工程与自然科学研究理事会;
关键词
IMAGE REGISTRATION; MOTION CORRECTION; SEGMENTATION; DECOMPOSITION; MODELS;
D O I
10.1109/CVPRW.2016.70
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) provides information on changes occurring during tumor growth in the tumor micro-environment and vasculature. In the present paper, tumor voxel-wise estimates of tumor descriptors including total cell number, proliferative cell number, hypoxic cell number, necrotic cell number and oxygen level derived from DCE-MRI data are used to guide the deformable registration of subsequent time points over the tumor growth cycle, evaluating their predictive value for tumor growth. The analysis of three preclinical colon carcinoma longitudinal cases shows that using physiologically meaningful measures of tumor as guidance information can improve non-rigid registration of longitudinal tumor imaging data when compared to a state-of-the-art local correlation coefficient Demons approach. Moreover, using the determinant of the Jacobian of the estimated displacement field as an indicator of volume change allows us to observe a correlation between the tumor descriptor values and tumor growth, especially when maps of hypoxic cells and level of oxygen were used to aid registration. To the best of our knowledge, this work demonstrates for the first time the feasibility of using biologically meaningful tumor descriptors (total cell number, proliferative cell number, hypoxic cell number, necrotic cell number and oxygen level) derived from DCE-MRI to aid non-rigid registration of longitudinal tumor data as well as to estimate tumor growth.
引用
收藏
页码:507 / 515
页数:9
相关论文
共 50 条
  • [41] Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI
    Zhou, Lei
    Zhang, Yuzhong
    Zhang, Jiadong
    Qian, Xuejun
    Gong, Chen
    Sun, Kun
    Ding, Zhongxiang
    Wang, Xing
    Li, Zhenhui
    Liu, Zaiyi
    Shen, Dinggang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2025, 44 (01) : 244 - 258
  • [42] Neural Machine Registration for Motion Correction in Breast DCE-MRI
    Aprea, Federica
    Marrone, Stefano
    Sansone, Carlo
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 4332 - 4339
  • [43] Registration on DCE-MRI images via multi-domain image-to-image translation
    Cai, Naxin
    Chen, Houjin
    Li, Yanfeng
    Peng, Yahui
    Guo, Linqiang
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2023, 104
  • [44] Pathophysiological mapping of tumor habitats in the breast in DCE-MRI using molecular texture descriptor
    da Silva Neto, Otilio Paulo
    Lima Araujo, Jose Denes
    Caldas Oliveira, Ana Gabriela
    Cutrim, Mara
    Silva, Aristofanes Correa
    Paiva, Anselmo Cardoso
    Gattass, Marcelo
    COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 106 : 114 - 125
  • [45] Correction to: A multiparametric analysis based on DCE-MRI to improve the accuracy of parotid tumor discrimination
    Zhifeng Xu
    Shaoyan Zheng
    Aizhen Pan
    Xiaofang Cheng
    Mingyong Gao
    European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47 : 1017 - 1017
  • [46] Contextual Regularization-Based Energy Optimization for Segmenting Breast Tumor in DCE-MRI
    Babu, Priyadharshini
    Asaithambi, Mythili
    Mogappair Suriyakumar, Sudhakar
    IEEE ACCESS, 2025, 13 : 51986 - 52005
  • [47] Heterogeneity of Tumor Vasculature and Antiangiogenic Intervention: Insights from MR Angiography and DCE-MRI
    Zhu, Wenlian
    Kato, Yoshinori
    Artemov, Dmitri
    PLOS ONE, 2014, 9 (01):
  • [48] Breast Tumor Segmentation in DCE-MRI Using Fully Convolutional Networks with an Application in Radiogenomics
    Zhang, Jun
    Saha, Ashirbani
    Zhu, Zhe
    Mazurowski, Maciej A.
    MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, 2018, 10575
  • [49] Blind estimation of pharmacokinetic parameters in cardiac DCE-MRI
    Jacob Fluckiger
    Matthias Schabel
    Edward DiBella
    Journal of Cardiovascular Magnetic Resonance, 12 (Suppl 1)
  • [50] Pattern recognition and pharmacokinetic methods on DCE-MRI data for tumor hypoxia mapping in sarcoma
    Venianaki, M.
    Salvetti, O.
    de Bree, E.
    Maris, T.
    Karantanas, A.
    Kontopodis, E.
    Nikiforaki, K.
    Marias, K.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (08) : 9417 - 9439