Tumor Growth Estimation via Registration of DCE-MRI Derived Tumor Specific Descriptors

被引:0
|
作者
Roque, Thais [1 ]
Papiez, Bartlomiej W. [1 ]
Kersemans, Veerle [2 ]
Smart, Sean [2 ]
Allen, Danny [2 ]
Chappell, Michael [1 ]
Schnabel, Julia A. [1 ,3 ]
机构
[1] Univ Oxford, Dept Engn Sci, Inst Biomed Engn, Oxford OX1 2JD, England
[2] Univ Oxford, Dept Oncol, Preclin Imaging Grp, Oxford OX1 2JD, England
[3] Kings Coll London, Div Imaging Sci & Biomed Engn, Dept Biomed Engn, London WC2R 2LS, England
基金
英国工程与自然科学研究理事会;
关键词
IMAGE REGISTRATION; MOTION CORRECTION; SEGMENTATION; DECOMPOSITION; MODELS;
D O I
10.1109/CVPRW.2016.70
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) provides information on changes occurring during tumor growth in the tumor micro-environment and vasculature. In the present paper, tumor voxel-wise estimates of tumor descriptors including total cell number, proliferative cell number, hypoxic cell number, necrotic cell number and oxygen level derived from DCE-MRI data are used to guide the deformable registration of subsequent time points over the tumor growth cycle, evaluating their predictive value for tumor growth. The analysis of three preclinical colon carcinoma longitudinal cases shows that using physiologically meaningful measures of tumor as guidance information can improve non-rigid registration of longitudinal tumor imaging data when compared to a state-of-the-art local correlation coefficient Demons approach. Moreover, using the determinant of the Jacobian of the estimated displacement field as an indicator of volume change allows us to observe a correlation between the tumor descriptor values and tumor growth, especially when maps of hypoxic cells and level of oxygen were used to aid registration. To the best of our knowledge, this work demonstrates for the first time the feasibility of using biologically meaningful tumor descriptors (total cell number, proliferative cell number, hypoxic cell number, necrotic cell number and oxygen level) derived from DCE-MRI to aid non-rigid registration of longitudinal tumor data as well as to estimate tumor growth.
引用
收藏
页码:507 / 515
页数:9
相关论文
共 50 条
  • [21] Automatic Liver Tumor Characterization Using LAVA DCE-MRI Images
    Urban, Szabolcs
    Tanacs, Attila
    VIPIMAGE 2017, 2018, 27 : 388 - 395
  • [22] Multi-phase Liver-Specific DCE-MRI Translation via A Registration-Guided GAN
    Liu, Jiyao
    Li, Yuxin
    Shi, Nannan
    Zhou, Yuncheng
    Gao, Shangqi
    Shi, Yuxin
    Zhang, Xiao-Yong
    Zhuang, Xiahai
    SIMULATION AND SYNTHESIS IN MEDICAL IMAGING, SASHIMI 2023, 2023, 14288 : 21 - 31
  • [23] Correlation of tumor characteristics derived from DCE-MRI and DW-MRI with histology in murine models of breast cancer
    Barnes, Stephanie L.
    Sorace, Anna G.
    Loveless, Mary E.
    Whisenant, Jennifer G.
    Yankeelov, Thomas E.
    NMR IN BIOMEDICINE, 2015, 28 (10) : 1345 - 1356
  • [24] Tumor modifications recorded with IVIM and DCE-MRI after Neoadjuvant radiotherapy
    Lallemand, F.
    Leroi, N.
    Bahri, M.
    Balteau, E.
    Noel, A.
    Coucke, P.
    Plenevaux, A.
    Martinive, P.
    RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S284 - S285
  • [25] Automated Breast Tumor Segmentation in DCE-MRI Using Deep Learning
    Benjelloun, Mohammed
    El Adoui, Mohammed
    Larhmam, Mohamed Amine
    Mahmoudi, Sidi Ahmed
    2018 4TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING TECHNOLOGIES AND APPLICATIONS (CLOUDTECH), 2018,
  • [26] A Multiresolution Analysis Framework For Breast Tumor Classification Based On DCE-MRI
    Tzalavra, Alexia G.
    Zacharaki, Evangelia I.
    Tsiaparas, Nikolaos N.
    Constantinidis, Fotios
    Nikita, Konstantina S.
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS & TECHNIQUES (IST), 2014, : 246 - 250
  • [27] Reproducibility and Comparison of DCE-MRI and DCE-CT Perfusion Parameters in a Rat Tumor Model
    Ng, Chaan S.
    Waterton, John C.
    Kundra, Vikas
    Brammer, David
    Ravoori, Murali
    Han, Lin
    Wei, Wei
    Klumpp, Sherry
    Johnson, Valen E.
    Jackson, Edward F.
    TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2012, 11 (03) : 279 - 288
  • [28] A groupwise multiresolution network for DCE-MRI image registration
    Strittmatter, Anika
    Weis, Meike
    Zoellner, Frank G.
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [29] DCE-MRI breast image registration for tumour diagnostics
    Kuczyński K.
    Siczek M.
    Stegierski R.
    Advances in Intelligent and Soft Computing, 2011, 102 : 323 - 329
  • [30] A superpixel-based framework for automatic tumor segmentation on breast DCE-MRI
    Yu, Ning
    Wu, Jia
    Weinstein, Susan P.
    Gaonkar, Bilwaj
    Keller, Brad M.
    Ashraf, Ahmed B.
    Jiang, YunQing
    Davatzikos, Christos
    Conant, Emily F.
    Kontos, Despina
    MEDICAL IMAGING 2015: COMPUTER-AIDED DIAGNOSIS, 2015, 9414