Finding maximal 2-dimensional palindromes

被引:6
|
作者
Geizhals, Sara H. [1 ]
Sokol, Dina [1 ,2 ]
机构
[1] CUNY, Grad Ctr, 365 Fifth Ave, New York, NY 10016 USA
[2] CUNY, Brooklyn Coll, 2900 Bedford Ave, Brooklyn, NY 11210 USA
关键词
Palindrome; Pattern matching; 2-dimensional; Centrosymmetric factor;
D O I
10.1016/j.ic.2019.03.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper extends the problem of palindrome searching into a higher dimension, addressing two definitions of 2D palindromes. The first definition implies a square, while the second definition (also known as a centrosymmetric factor) can be any rectangular shape. We present a linear time algorithm for locating all maximal square 2D palindromes in a given 2D text. For the second definition of palindromes (rect2DP), we present two different algorithms. Given a text of size n x n, the first algorithm has time O(n(3)), which is linear in the worst case output size. The second algorithm has time O(n(2) logn + occ logn), where occis the number of maximal rect2D Pin the output. This provides a tradeoff in terms of output size; if the output size is small, the second algorithm is preferable, while the first would be more efficient if the output size is Theta (n(3)). (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:161 / 172
页数:12
相关论文
共 50 条
  • [1] 2-Dimensional palindromes with k mismatches
    Sokol, Dina
    INFORMATION PROCESSING LETTERS, 2020, 164
  • [2] Tighter Bounds and Optimal Algorithms for All Maximal α-gapped Repeats and Palindromes: Finding All Maximal α-gapped Repeats and Palindromes in Optimal Worst Case Time on Integer Alphabets
    Gawrychowski P.
    I T.
    Inenaga S.
    Köppl D.
    Manea F.
    Gawrychowski, Paweł (gawry@mimuw.edu.pl), 2018, Springer Science and Business Media, LLC (62) : 162 - 191
  • [3] Counting and Verifying Maximal Palindromes
    Tomohiro, I
    Inenaga, Shunsuke
    Bannai, Hideo
    Takeda, Masayuki
    STRING PROCESSING AND INFORMATION RETRIEVAL, 2010, 6393 : 135 - +
  • [4] 3-NETS WITH MAXIMAL FAMILY OF 2-DIMENSIONAL SUBNETS
    NAGY, PT
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1991, 61 : 203 - 211
  • [5] A 2-DIMENSIONAL CORRELATION PROPERTY OF PSEUDORANDOM MAXIMAL LENGTH SEQUENCES
    SPANN, R
    PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1965, 53 (12): : 2137 - &
  • [6] Finding Gapped Palindromes Online
    Fujishige, Yuta
    Nakamura, Michitaro
    Inenaga, Shunsuke
    Bannai, Hideo
    Takeda, Masayuki
    Combinatorial Algorithms, 2016, 9843 : 191 - 202
  • [7] Finding approximate palindromes in strings
    Porto, AHL
    Barbosa, VC
    PATTERN RECOGNITION, 2002, 35 (11) : 2581 - 2591
  • [8] AN ALGORITHM FOR FINDING A SHORTEST VECTOR IN A 2-DIMENSIONAL MODULAR LATTICE
    LEMPEL, M
    PAZ, A
    THEORETICAL COMPUTER SCIENCE, 1994, 125 (02) : 229 - 241
  • [9] Maximal degenerate palindromes with gaps and mismatches
    Alzamel, Mai
    Hampson, Christopher
    Iliopoulos, Costas S.
    Lim, Zara
    Pissis, Solon
    Vlachakis, Dimitrios
    Watts, Steven
    THEORETICAL COMPUTER SCIENCE, 2023, 978
  • [10] FINDING ALL APPROXIMATE GAPPED PALINDROMES
    Hsu, Ping-Hui
    Chen, Kuan-Yu
    Chao, Kun-Mao
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2010, 21 (06) : 925 - 939