Finding maximal 2-dimensional palindromes

被引:6
|
作者
Geizhals, Sara H. [1 ]
Sokol, Dina [1 ,2 ]
机构
[1] CUNY, Grad Ctr, 365 Fifth Ave, New York, NY 10016 USA
[2] CUNY, Brooklyn Coll, 2900 Bedford Ave, Brooklyn, NY 11210 USA
关键词
Palindrome; Pattern matching; 2-dimensional; Centrosymmetric factor;
D O I
10.1016/j.ic.2019.03.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper extends the problem of palindrome searching into a higher dimension, addressing two definitions of 2D palindromes. The first definition implies a square, while the second definition (also known as a centrosymmetric factor) can be any rectangular shape. We present a linear time algorithm for locating all maximal square 2D palindromes in a given 2D text. For the second definition of palindromes (rect2DP), we present two different algorithms. Given a text of size n x n, the first algorithm has time O(n(3)), which is linear in the worst case output size. The second algorithm has time O(n(2) logn + occ logn), where occis the number of maximal rect2D Pin the output. This provides a tradeoff in terms of output size; if the output size is small, the second algorithm is preferable, while the first would be more efficient if the output size is Theta (n(3)). (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:161 / 172
页数:12
相关论文
共 50 条
  • [21] THE DERIVATION OF ONLINE ALGORITHMS, WITH AN APPLICATION TO FINDING PALINDROMES
    JEURING, J
    ALGORITHMICA, 1994, 11 (02) : 146 - 184
  • [22] 2-DIMENSIONAL OBJECT RECOGNITION USING A 2-DIMENSIONAL POLAR TRANSFORM
    BLUMENKRANS, A
    PATTERN RECOGNITION, 1991, 24 (09) : 879 - 890
  • [23] 2-DIMENSIONAL SUPER RIEMANN GEOMETRY AND 2-DIMENSIONAL INDUCED SUPERGRAVITY
    CHUNG, WS
    LEE, JJ
    YOU, CK
    KIM, JW
    CLASSICAL AND QUANTUM GRAVITY, 1993, 10 (04) : 609 - 617
  • [24] LUMPED CIRCUIT MODEL OF 2-DIMENSIONAL TO 2-DIMENSIONAL TUNNELING TRANSISTORS
    KATAYAMA, Y
    TSUI, DC
    APPLIED PHYSICS LETTERS, 1993, 62 (20) : 2563 - 2565
  • [25] The maximal operator of the Marcinkiewicz-Fejer means of the 2-dimensional Vilenkin-Fourier series
    Blahota, Istvan
    Goginava, Ushangi
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2008, 45 (03) : 321 - 331
  • [26] Finding all periods and initial palindromes of a string in parallel
    Breslauer, D.
    Galil, Z.
    Algorithmica (New York), 1995, 14 (04):
  • [27] Finding top-k longest palindromes in substrings
    Mitani, Kazuki
    Mieno, Takuya
    Seto, Kazuhisa
    Horiyama, Takashi
    THEORETICAL COMPUTER SCIENCE, 2023, 979
  • [28] Derivation of on-line algorithms, with an application to finding palindromes
    Jeuring, Johan
    Algorithmica (New York), 1994, 11 (02): : 146 - 184
  • [29] FINDING ALL PERIODS AND INITIAL PALINDROMES OF A STRING IN PARALLEL
    BRESLAUER, D
    GALIL, Z
    ALGORITHMICA, 1995, 14 (04) : 355 - 366
  • [30] Computing Maximal Palindromes in Non-standard Matching Models
    Funakoshi, Mitsuru
    Mieno, Takuya
    Nakashima, Yuto
    Inenaga, Shunsuke
    Bannai, Hideo
    Takeda, Masayuki
    COMBINATORIAL ALGORITHMS, IWOCA 2024, 2024, 14764 : 165 - 179