FINDING ALL APPROXIMATE GAPPED PALINDROMES

被引:9
|
作者
Hsu, Ping-Hui [1 ]
Chen, Kuan-Yu
Chao, Kun-Mao [1 ]
机构
[1] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Grad Inst Biomed Elect & Bioinformat, Grad Inst Networking & Multimedia, Taipei 106, Taiwan
关键词
Palindrome; incremental string comparison; string matching; STRINGS; WORDS;
D O I
10.1142/S0129054110007647
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the problem of finding all maximal approximate gapped palindromes in a string. More specifically, given a string S of length n, a parameter q >= 0 and a threshold k > 0, the problem is to identify all substrings in S of the form uvw such that (1) the Levenshtein distance between u(r) and w is at most k, where u(r) is the reverse of u and (2) v is a string of length q. The best previous work requires O(k(2)n) time. In this paper, we propose an O(kn)-time algorithm for this problem by utilizing an incremental string comparison technique. It turns out that the core technique actually solves a more general incremental string comparison problem that allows the insertion, deletion, and substitution of multiple symbols.
引用
收藏
页码:925 / 939
页数:15
相关论文
共 50 条
  • [1] Finding All Approximate Gapped Palindromes
    Hsu, Ping-Hui
    Chen, Kuan-Yu
    Chao, Kun-Mao
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5878 : 1084 - 1093
  • [2] Finding Gapped Palindromes Online
    Fujishige, Yuta
    Nakamura, Michitaro
    Inenaga, Shunsuke
    Bannai, Hideo
    Takeda, Masayuki
    Combinatorial Algorithms, 2016, 9843 : 191 - 202
  • [3] Tighter Bounds and Optimal Algorithms for All Maximal α-gapped Repeats and Palindromes: Finding All Maximal α-gapped Repeats and Palindromes in Optimal Worst Case Time on Integer Alphabets
    Gawrychowski P.
    I T.
    Inenaga S.
    Köppl D.
    Manea F.
    Gawrychowski, Paweł (gawry@mimuw.edu.pl), 2018, Springer Science and Business Media, LLC (62) : 162 - 191
  • [4] Finding approximate palindromes in strings
    Porto, AHL
    Barbosa, VC
    PATTERN RECOGNITION, 2002, 35 (11) : 2581 - 2591
  • [5] Searching for gapped palindromes
    Kolpakov, Roman
    Kucherov, Gregory
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (51) : 5365 - 5373
  • [6] Improved upper bounds on all maximal α-gapped repeats and palindromes
    Tomohiro, I
    Koeppl, Dominik
    THEORETICAL COMPUTER SCIENCE, 2019, 753 (1-15) : 1 - 15
  • [7] Searching for gapped palindromes
    Kolpakov, Roman
    Kucherov, Gregory
    COMBINATORIAL PATTERN MATCHING, 2008, 5029 : 18 - +
  • [8] Tighter Bounds and Optimal Algorithms for All Maximal α-gapped Repeats and Palindromes
    Gawrychowski, Pawel
    Tomohiro, I
    Inenaga, Shunsuke
    Koeppl, Dominik
    Manea, Florin
    THEORY OF COMPUTING SYSTEMS, 2018, 62 (01) : 162 - 191
  • [9] Longest Gapped Repeats and Palindromes
    Dumitran, Marius
    Gawrychowski, Pawel
    Manea, Florin
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2017, 19 (04):
  • [10] Longest Gapped Repeats and Palindromes
    Dumitran, Marius
    Manea, Florin
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2015, PT I, 2015, 9234 : 205 - 217