Longest Gapped Repeats and Palindromes

被引:10
|
作者
Dumitran, Marius [1 ]
Manea, Florin [2 ]
机构
[1] Univ Bucharest, Fac Math & Comp Sci, Bucharest 010014, Romania
[2] Univ Kiel, Dept Comp Sci, Christian Albrechts Pl 4, D-24118 Kiel, Germany
关键词
ALGORITHM;
D O I
10.1007/978-3-662-48057-1_16
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A gapped repeat (respectively, palindrome) occurring in a word w is a factor uvu (respectively, u(R)vu) of w. We show how to compute efficiently, for every position i of the word w, the longest prefix u of w[i.. n] such that uv (respectively, u(R)v) is a suffix of w[1.. i - 1] (defining thus a gapped repeat uvu - respectively, palindrome u R vu), and the length of v is subject to various types of restrictions.
引用
收藏
页码:205 / 217
页数:13
相关论文
共 50 条
  • [1] Longest Gapped Repeats and Palindromes
    Dumitran, Marius
    Gawrychowski, Pawel
    Manea, Florin
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2017, 19 (04):
  • [2] Computing Longest Single-arm-gapped Palindromes in a String
    Narisada, Shintaro
    Diptarama
    Narisawa, Kazuyuki
    Inenaga, Shunsuke
    Shinohara, Ayumi
    SOFSEM 2017: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2017, 10139 : 375 - 386
  • [3] Efficient computation of longest single-arm-gapped palindromes in a string
    Narisada, Shintaro
    Hendrian, Diptarama
    Narisawa, Kazuyuki
    Inenaga, Shunsuke
    Shinohara, Ayumi
    THEORETICAL COMPUTER SCIENCE, 2020, 812 (812) : 160 - 173
  • [4] Improved upper bounds on all maximal α-gapped repeats and palindromes
    Tomohiro, I
    Koeppl, Dominik
    THEORETICAL COMPUTER SCIENCE, 2019, 753 (1-15) : 1 - 15
  • [5] Tighter Bounds and Optimal Algorithms for All Maximal α-gapped Repeats and Palindromes: Finding All Maximal α-gapped Repeats and Palindromes in Optimal Worst Case Time on Integer Alphabets
    Gawrychowski P.
    I T.
    Inenaga S.
    Köppl D.
    Manea F.
    Gawrychowski, Paweł (gawry@mimuw.edu.pl), 2018, Springer Science and Business Media, LLC (62) : 162 - 191
  • [6] Tighter Bounds and Optimal Algorithms for All Maximal α-gapped Repeats and Palindromes
    Gawrychowski, Pawel
    Tomohiro, I
    Inenaga, Shunsuke
    Koeppl, Dominik
    Manea, Florin
    THEORY OF COMPUTING SYSTEMS, 2018, 62 (01) : 162 - 191
  • [7] Searching for gapped palindromes
    Kolpakov, Roman
    Kucherov, Gregory
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (51) : 5365 - 5373
  • [8] Searching for gapped palindromes
    Kolpakov, Roman
    Kucherov, Gregory
    COMBINATORIAL PATTERN MATCHING, 2008, 5029 : 18 - +
  • [9] Finding Gapped Palindromes Online
    Fujishige, Yuta
    Nakamura, Michitaro
    Inenaga, Shunsuke
    Bannai, Hideo
    Takeda, Masayuki
    Combinatorial Algorithms, 2016, 9843 : 191 - 202
  • [10] Longest arithmetic progressions of palindromes
    Pongsriiam, Prapanpong
    JOURNAL OF NUMBER THEORY, 2021, 222 : 362 - 375