EXPLICIT EXACT TRAVELING WAVE SOLUTIONS AND BIFURCATIONS OF THE KUNDU-ECKHAUS EQUATION

被引:0
|
作者
Zhu, Wenjing [1 ]
Xia, Yonghui [2 ]
Bai, Yuzhen [3 ]
机构
[1] China Jiliang Univ, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[3] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Kundu-Eckhaus equation; exact solution; bifurcation; kink wave solution; CAMASSA-HOLM EQUATION; SPATIOTEMPORAL DYNAMICS; VARIABLE-COEFFICIENTS; OPTICAL SOLITON; PERIODIC-WAVE; EXISTENCE; DIFFUSION; MODEL; BEHAVIOR; PEAKONS;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The paper deals with the nonlinear complex Kundu-Eckhaus (KE) equation, a basic model in nonlinear optics which describes the propagation of solitons through the optical fiber. The bifurcation analysis is performed on the dynamic system associated to traveling wave solutions, showing the existence of periodic wave solutions, bright solitons, dark solitons, kink wave and anti-kink wave solutions, in different parametric domains. Explicit parametric representations of the traveling wave solutions are also obtained. Phase portraits and simulations are presented to illustrate the theoretical results.
引用
收藏
页码:197 / 203
页数:7
相关论文
共 50 条
  • [31] Exact traveling wave solutions and bifurcations of the Biswas–Milovic equation
    Wenjing Zhu
    Jibin Li
    Nonlinear Dynamics, 2016, 84 : 1973 - 1987
  • [32] Exact Traveling Wave Solutions and Bifurcations of the Burgers-αβ Equation
    Zhu, Wenjing
    Li, Jibin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (10):
  • [33] Exact traveling wave solutions and bifurcations of the dual Ito equation
    J. B. Li
    F. J. Chen
    Nonlinear Dynamics, 2015, 82 : 1537 - 1550
  • [34] Exact traveling wave solutions and bifurcations of the dual Ito equation
    Li, J. B.
    Chen, F. J.
    NONLINEAR DYNAMICS, 2015, 82 (03) : 1537 - 1550
  • [35] Reductions for Kundu-Eckhaus equation via Lie symmetry analysis
    Toomanian, Megerdich
    Asadi, Naser
    MATHEMATICAL SCIENCES, 2013, 7 (01)
  • [36] Bifurcations and exact traveling wave solutions for the regularized Schamel equation
    Cai, Qiue
    Tan, Kaixuan
    Li, Jiang
    OPEN MATHEMATICS, 2021, 19 (01): : 1699 - 1712
  • [37] New optical solitons of Kundu-Eckhaus equation via ? -symmetry
    Mendoza, J.
    Muriel, C.
    Ramirez, J.
    CHAOS SOLITONS & FRACTALS, 2020, 136
  • [38] Whitham modulation theory and Riemann problem for the Kundu-Eckhaus equation
    Tan, QingShan
    Zhang, Jian
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 470
  • [39] A partial derivative-dressing approach to the Kundu-Eckhaus equation
    Luo, Jinghua
    Fan, Engui
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 167
  • [40] Optical solitons for the Kundu-Eckhaus equation with time dependent coefficient
    Inc, Mustafa
    Baleanu, Dumitru
    OPTIK, 2018, 159 : 324 - 332