EXPLICIT EXACT TRAVELING WAVE SOLUTIONS AND BIFURCATIONS OF THE KUNDU-ECKHAUS EQUATION

被引:0
|
作者
Zhu, Wenjing [1 ]
Xia, Yonghui [2 ]
Bai, Yuzhen [3 ]
机构
[1] China Jiliang Univ, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[3] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
来源
PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE | 2020年 / 21卷 / 03期
基金
中国国家自然科学基金;
关键词
Kundu-Eckhaus equation; exact solution; bifurcation; kink wave solution; CAMASSA-HOLM EQUATION; SPATIOTEMPORAL DYNAMICS; VARIABLE-COEFFICIENTS; OPTICAL SOLITON; PERIODIC-WAVE; EXISTENCE; DIFFUSION; MODEL; BEHAVIOR; PEAKONS;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The paper deals with the nonlinear complex Kundu-Eckhaus (KE) equation, a basic model in nonlinear optics which describes the propagation of solitons through the optical fiber. The bifurcation analysis is performed on the dynamic system associated to traveling wave solutions, showing the existence of periodic wave solutions, bright solitons, dark solitons, kink wave and anti-kink wave solutions, in different parametric domains. Explicit parametric representations of the traveling wave solutions are also obtained. Phase portraits and simulations are presented to illustrate the theoretical results.
引用
收藏
页码:197 / 203
页数:7
相关论文
共 50 条
  • [21] Abundant soliton solutions for the Kundu-Eckhaus equation via tan(φ(ξ))-expansion method
    Manafian, Jalil
    Lakestani, Mehrdad
    OPTIK, 2016, 127 (14): : 5543 - 5551
  • [22] Optical solitons and conservation law of Kundu-Eckhaus equation
    Mirzazadeh, Mohammad
    Yildirim, Yakup
    Yasar, Emrullah
    Triki, Houria
    Zhou, Qin
    Moshokoa, Seithuti P.
    Ullah, Malik Zaka
    Seadawy, Aly R.
    Biswas, Anjan
    Belic, Milivoj
    OPTIK, 2018, 154 : 551 - 557
  • [23] Explicit exact solitary wave solutions for the Kundu equation and the derivative Schrodinger equation
    Feng, ZS
    Wang, XH
    PHYSICA SCRIPTA, 2001, 64 (01) : 7 - 14
  • [24] Analysis of solitary wave solutions in the fractional-order Kundu-Eckhaus system
    Alshammari, Saleh
    Moaddy, Khaled
    Shah, Rasool
    Alshammari, Mohammad
    Alsheekhhussain, Zainab
    Al-sawalha, M. Mossa
    Yar, Mohammad
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [25] Exact explicit traveling wave solutions for the CDF equation
    Geng, Yixiang
    Li, Jibin
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 203 (02) : 536 - 562
  • [26] Soliton solutions for the nonlocal reverse space Kundu-Eckhaus equation via symbolic calculation
    Deng, Yu-Han
    Meng, Xiang-Hua
    Yue, Gui-Min
    Shen, Yu-Jia
    OPTIK, 2022, 252
  • [27] A large family of optical solutions to Kundu-Eckhaus model by a new auxiliary equation method
    Rezazadeh, Hadi
    Korkmaz, Alper
    Eslami, Mostafa
    Mirhosseini-Alizamini, Seyed Mehdi
    OPTICAL AND QUANTUM ELECTRONICS, 2019, 51 (03)
  • [28] Soliton solutions for the Kundu-Eckhaus equation with the aid of unified algebraic and auxiliary equation expansion methods
    Kilic, Bulent
    Inc, Mustafa
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2016, 30 (07) : 871 - 879
  • [29] BIFURCATIONS OF TRAVELING WAVE SOLUTIONS AND EXACT SOLUTIONS FOR THE GENERALIZED SCHRODINGER EQUATION
    Zhang, Jianming
    Li, Shuming
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (09): : 2623 - 2628
  • [30] Modulational instability criterion for optical wave propagation in birefringent fiber of Kundu-Eckhaus equation
    Parasuraman, E.
    OPTIK, 2021, 243