On a partial order defined by the weighted Moore-Penrose inverse

被引:22
|
作者
Hernandez, A. [1 ]
Lattanzi, M. [2 ]
Thome, N. [3 ]
机构
[1] Univ Nacl La Pampa, Fac Ingn, Gen Pico, La Pampa, Argentina
[2] Univ Nacl La Pampa, Fac Ciencias Exactas & Nat, Santa Rosa, La Pampa, Argentina
[3] Univ Politecn Valencia, Inst Univ Matemat Multidisciplinar, Valencia 46022, Spain
关键词
Weighted Moore-Penrose inverse; Weighted-EP matrix; Weighted star partial order; Eigenprojection; MATRIX PARTIAL ORDERINGS;
D O I
10.1016/j.amc.2013.02.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The weighted Moore-Penrose inverse of a matrix can be used to define a partial order on the set of m x n complex matrices and to introduce the concept of weighted-EP matrices. In this paper we study the weighted star partial order on the set of weighted-EP matrices. In addition, some properties that relate the eigenprojection at zero with the weighted star partial order are obtained. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:7310 / 7318
页数:9
相关论文
共 50 条
  • [41] Effective partitioning method for computing weighted Moore-Penrose inverse
    Petkovic, Marko D.
    Stanirnirovic, Predrag S.
    Tasic, Milan B.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (08) : 1720 - 1734
  • [42] WEIGHTED MOORE-PENROSE INVERSE: PHP vs. MATHEMATICA
    Pepic, Selver H.
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2010, 25 : 35 - 45
  • [43] Recurrent neural networks for computing weighted Moore-Penrose inverse
    Wei, YM
    APPLIED MATHEMATICS AND COMPUTATION, 2000, 116 (03) : 279 - 287
  • [44] An accelerated iterative method for computing weighted Moore-Penrose inverse
    Soleymani, F.
    Stanimirovic, Predrag S.
    Ullah, Malik Zaka
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 222 : 365 - 371
  • [45] Moore-Penrose inverse and partial orders on Hilbert space operators
    Fongi, Guillermina
    Gonzalez, M. Celeste
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 674 : 1 - 20
  • [46] A new proof of the reverse order law for Moore-Penrose inverse
    Zheng, Bing
    Xiong, Zhiping
    Advances in Matrix Theory and Applications, 2006, : 154 - 157
  • [47] Weighted Moore-Penrose inverses of arbitrary-order tensors
    Behera, Ratikanta
    Maji, Sandip
    Mohapatra, R. N.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (04):
  • [48] REVERSE ORDER LAW FOR THE MOORE-PENROSE INVERSE IN C*-ALGEBRAS
    Mosic, Dijana
    Djordjevic, Dragan S.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2011, 22 : 92 - 111
  • [49] Identities concerning the reverse order law for the Moore-Penrose inverse
    Dincic, Nebojsa C.
    Djordjevic, Dragan S.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 : 439 - 445
  • [50] Representation of the Weighted Moore-Penrose Inverse in Terms of Inverses of Quaternion Matrix
    Yuan, Wangui
    Liao, Zuhua
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 411 - 413