On a partial order defined by the weighted Moore-Penrose inverse

被引:22
|
作者
Hernandez, A. [1 ]
Lattanzi, M. [2 ]
Thome, N. [3 ]
机构
[1] Univ Nacl La Pampa, Fac Ingn, Gen Pico, La Pampa, Argentina
[2] Univ Nacl La Pampa, Fac Ciencias Exactas & Nat, Santa Rosa, La Pampa, Argentina
[3] Univ Politecn Valencia, Inst Univ Matemat Multidisciplinar, Valencia 46022, Spain
关键词
Weighted Moore-Penrose inverse; Weighted-EP matrix; Weighted star partial order; Eigenprojection; MATRIX PARTIAL ORDERINGS;
D O I
10.1016/j.amc.2013.02.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The weighted Moore-Penrose inverse of a matrix can be used to define a partial order on the set of m x n complex matrices and to introduce the concept of weighted-EP matrices. In this paper we study the weighted star partial order on the set of weighted-EP matrices. In addition, some properties that relate the eigenprojection at zero with the weighted star partial order are obtained. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:7310 / 7318
页数:9
相关论文
共 50 条
  • [21] The Weighted Moore-Penrose Inverse of a Matrix over Antirings
    Bao, Yu-Bao
    Wang, Qing-Wen
    Liu, Bao-Fu
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPPLICATIONS, VOL 1, 2009, : 8 - 11
  • [22] ON WEIGHTED REVERSE ORDER LAWS FOR THE MOORE-PENROSE INVERSE AND K-INVERSES
    Boasso, Enrico
    Cvetkovic-Ilic, Dragana S.
    Harte, Robin
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (03) : 959 - 971
  • [23] REPRESENTATIONS FOR THE WEIGHTED MOORE-PENROSE INVERSE OF A PARTITIONED MATRIX
    MIAO, JM
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1989, 7 (04) : 321 - 323
  • [24] NORM ESTIMATIONS FOR PERTURBATIONS OF THE WEIGHTED MOORE-PENROSE INVERSE
    Zhang, Xiaobo
    Xu, Qingxiang
    Wei, Yimin
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (01): : 216 - 226
  • [25] About the generalized LM-inverse and the weighted Moore-Penrose inverse
    Tasic, Milan B.
    Stanimirovic, Predrag S.
    Pepic, Selver H.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (01) : 114 - 124
  • [26] Generalization of the Moore-Penrose inverse
    Stojanovic, Katarina S.
    Mosic, Dijana
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (04)
  • [27] On the computation of weighted Moore-Penrose inverse using a high-order matrix method
    Soheili, Ali R.
    Sofeymani, F.
    Petkovic, M. D.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (11) : 2344 - 2351
  • [28] A CHARACTERIZATION OF THE MOORE-PENROSE INVERSE
    FIEDLER, M
    MARKHAM, TL
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 179 : 129 - 133
  • [29] The Moore-Penrose inverse of a factorization
    Patrício, P
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 370 : 227 - 235
  • [30] Extending the Moore-Penrose Inverse
    Dincic, Nebojsa C.
    FILOMAT, 2016, 30 (02) : 419 - 428