On a partial order defined by the weighted Moore-Penrose inverse

被引:22
|
作者
Hernandez, A. [1 ]
Lattanzi, M. [2 ]
Thome, N. [3 ]
机构
[1] Univ Nacl La Pampa, Fac Ingn, Gen Pico, La Pampa, Argentina
[2] Univ Nacl La Pampa, Fac Ciencias Exactas & Nat, Santa Rosa, La Pampa, Argentina
[3] Univ Politecn Valencia, Inst Univ Matemat Multidisciplinar, Valencia 46022, Spain
关键词
Weighted Moore-Penrose inverse; Weighted-EP matrix; Weighted star partial order; Eigenprojection; MATRIX PARTIAL ORDERINGS;
D O I
10.1016/j.amc.2013.02.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The weighted Moore-Penrose inverse of a matrix can be used to define a partial order on the set of m x n complex matrices and to introduce the concept of weighted-EP matrices. In this paper we study the weighted star partial order on the set of weighted-EP matrices. In addition, some properties that relate the eigenprojection at zero with the weighted star partial order are obtained. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:7310 / 7318
页数:9
相关论文
共 50 条
  • [1] Weighted generalized Moore-Penrose inverse
    Mosic, Dijana
    GEORGIAN MATHEMATICAL JOURNAL, 2023, 30 (06) : 919 - 932
  • [2] The generalized weighted Moore-Penrose inverse
    Sheng X.
    Chen G.
    Journal of Applied Mathematics and Computing, 2007, 25 (1-2) : 407 - 413
  • [3] Existence of Weighted Moore-Penrose Inverse
    Zhuang, Guifen
    Chen, Jianlong
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 477 - 480
  • [4] Weighted Moore-Penrose inverse of a Boolean matrix
    Bapat, RB
    Jain, SK
    Pati, S
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 255 : 267 - 279
  • [5] Expression for the perturbation of the weighted Moore-Penrose inverse
    Wei, YM
    Wu, HB
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (5-6) : 13 - 18
  • [6] The weighted Moore-Penrose inverse of modified matrices
    Wei, YM
    APPLIED MATHEMATICS AND COMPUTATION, 2001, 122 (01) : 1 - 13
  • [7] The representation and approximation for the weighted Moore-Penrose inverse
    Wei, YM
    Wu, HB
    APPLIED MATHEMATICS AND COMPUTATION, 2001, 121 (01) : 17 - 28
  • [8] THE WEIGHTED MOORE-PENROSE INVERSE FOR SUM OF MATRICES
    Xiong, Zhiping
    Qin, Yingying
    OPERATORS AND MATRICES, 2014, 8 (03): : 747 - 757
  • [9] Reverse-order law for weighted Moore-Penrose inverse of tensors
    Panigrahy, Krushnachandra
    Mishra, Debasisha
    ADVANCES IN OPERATOR THEORY, 2020, 5 (01) : 39 - 63
  • [10] Weighted Moore-Penrose Inverse of a Fuzzy Matrix
    Cheng, Shi-zhen
    Li, Hong-xing
    FUZZY INFORMATION AND ENGINEERING, VOLUME 2, 2009, 62 : 573 - +