Audio-Noise Power Spectral Density Estimation Using Long Short-Term Memory

被引:7
|
作者
Li, Xiaofei [1 ,2 ]
Leglaive, Simon [1 ,2 ]
Girin, Laurent [1 ,3 ]
Horaud, Radu [1 ,2 ]
机构
[1] Inria Grenoble Rhone Alpes, F-38330 Montbonnot St Martin, France
[2] Univ Grenoble Alpes, F-38400 St Martin Dheres, France
[3] Univ Grenoble Alpes, Grenoble INP, GIPSA Lab, F-38400 St Martin Dheres, France
基金
欧洲研究理事会;
关键词
LSTM; noise PSD; speech enhancement; SPEECH ENHANCEMENT;
D O I
10.1109/LSP.2019.2911879
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a method using a long short-term memory (LSTM) network to estimate the noise power spectral density (PSD) of single-channel audio signals represented in the short-time Fourier transform (STFT) domain. An LSTM network common to all frequency bands is trained, which processes each frequency band individually by mapping the noisy STFT magnitude sequence to its corresponding noise PSD sequence. Unlike deep-learning-based speech-enhancement methods, which learn the full-band spectral structure of speech segments, the proposed method exploits the sub-band STFT magnitude evolution of noise with long time dependence, in the spirit of the unsupervised noise estimators described in the literature. Speaker- and speech-independent experiments with different types of noise show that the proposed method outperforms the unsupervised estimators, and it generalizes well to noise types that are not present in the training set.
引用
收藏
页码:918 / 922
页数:5
相关论文
共 50 条
  • [41] PowerLSTM: Power Demand Forecasting Using Long Short-Term Memory Neural Network
    Cheng, Yao
    Xu, Chang
    Mashima, Daisuke
    Thing, Vrizlynn L. L.
    Wu, Yongdong
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2017, 2017, 10604 : 727 - 740
  • [42] Radial Deformation Emplacement in Power Transformers Using Long Short-Term Memory Networks
    Moradzadeh, Arash
    Pourhossein, Kazem
    Mohammadi-Ivatloo, Behnam
    Khalili, Tohid
    Bidram, Ali
    2021 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT), 2021,
  • [43] Long Short-Term Memory Network for Remaining Useful Life Estimation
    Zheng, Shuai
    Ristovski, Kosta
    Farahat, Ahmed
    Gupta, Chetan
    2017 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2017, : 88 - 95
  • [44] Interpretable Long Short-Term Memory Networks for Crop Yield Estimation
    Mateo-Sanchis, Anna
    Adsuara, Jose E.
    Piles, Maria
    Munoz-Mari, Jordi
    Perez-Suay, Adrian
    Camps-Valls, Gustau
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [45] ESTIMATION OF PROBABILITY DENSITY OF POTENTIAL FIRE INTENSITY USING QUANTILE REGRESSION AND BI-DIRECTIONAL LONG SHORT-TERM MEMORY
    Chen, Rui
    Li, Yanxi
    Yin, Jianpeng
    Fan, Chunquan
    Zhang, Yiru
    He, Binbin
    Liu, Chuanfeng
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 2516 - 2519
  • [46] Time Series-based Spoof Speech Detection Using Long Short-term Memory and Bidirectional Long Short-term Memory
    Mirza, Arsalan R.
    Al-Talabani, Abdulbasit K.
    ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 2024, 12 (02): : 119 - 129
  • [47] Short-term Load Forecasting with Distributed Long Short-Term Memory
    Dong, Yi
    Chen, Yang
    Zhao, Xingyu
    Huang, Xiaowei
    2023 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE, ISGT, 2023,
  • [48] A short-term prediction model of global ionospheric VTEC based on the combination of long short-term memory and convolutional long short-term memory
    Peng Chen
    Rong Wang
    Yibin Yao
    Hao Chen
    Zhihao Wang
    Zhiyuan An
    Journal of Geodesy, 2023, 97
  • [49] A short-term prediction model of global ionospheric VTEC based on the combination of long short-term memory and convolutional long short-term memory
    Chen, Peng
    Wang, Rong
    Yao, Yibin
    Chen, Hao
    Wang, Zhihao
    An, Zhiyuan
    JOURNAL OF GEODESY, 2023, 97 (05)
  • [50] QUANTUM LONG SHORT-TERM MEMORY
    Chen, Samuel Yen-Chi
    Yoo, Shinjae
    Fang, Yao-Lung L.
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 8622 - 8626