Audio-Noise Power Spectral Density Estimation Using Long Short-Term Memory

被引:7
|
作者
Li, Xiaofei [1 ,2 ]
Leglaive, Simon [1 ,2 ]
Girin, Laurent [1 ,3 ]
Horaud, Radu [1 ,2 ]
机构
[1] Inria Grenoble Rhone Alpes, F-38330 Montbonnot St Martin, France
[2] Univ Grenoble Alpes, F-38400 St Martin Dheres, France
[3] Univ Grenoble Alpes, Grenoble INP, GIPSA Lab, F-38400 St Martin Dheres, France
基金
欧洲研究理事会;
关键词
LSTM; noise PSD; speech enhancement; SPEECH ENHANCEMENT;
D O I
10.1109/LSP.2019.2911879
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a method using a long short-term memory (LSTM) network to estimate the noise power spectral density (PSD) of single-channel audio signals represented in the short-time Fourier transform (STFT) domain. An LSTM network common to all frequency bands is trained, which processes each frequency band individually by mapping the noisy STFT magnitude sequence to its corresponding noise PSD sequence. Unlike deep-learning-based speech-enhancement methods, which learn the full-band spectral structure of speech segments, the proposed method exploits the sub-band STFT magnitude evolution of noise with long time dependence, in the spirit of the unsupervised noise estimators described in the literature. Speaker- and speech-independent experiments with different types of noise show that the proposed method outperforms the unsupervised estimators, and it generalizes well to noise types that are not present in the training set.
引用
收藏
页码:918 / 922
页数:5
相关论文
共 50 条
  • [21] Hyperspectral Target Detection Using Long Short-Term Memory and Spectral Angle Mapper
    Demirel, Berkan
    Ozdil, Omer
    Esin, Yunus Emre
    Ozturk, Safak
    2019 27TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2019,
  • [22] Noise-robust structural response estimation method using short-time Fourier transform and long short-term memory
    Yun, Da Yo
    Park, Hyo Seon
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2025, 40 (07) : 859 - 878
  • [23] Adaptive Clustering Long Short-Term Memory Network for Short-Term Power Load Forecasting
    Qi, Yuanhang
    Luo, Haoyu
    Luo, Yuhui
    Liao, Rixu
    Ye, Liwei
    ENERGIES, 2023, 16 (17)
  • [24] Long short-term memory
    Hochreiter, S
    Schmidhuber, J
    NEURAL COMPUTATION, 1997, 9 (08) : 1735 - 1780
  • [25] Short-Term Traffic Prediction Using Long Short-Term Memory Neural Networks
    Abbas, Zainab
    Al-Shishtawy, Ahmad
    Girdzijauskas, Sarunas
    Vlassov, Vladimir
    2018 IEEE INTERNATIONAL CONGRESS ON BIG DATA (IEEE BIGDATA CONGRESS), 2018, : 57 - 65
  • [26] Density limit disruption prediction using a long short-term memory network on EAST
    张凱
    陈大龙
    郭笔豪
    陈俊杰
    肖炳甲
    Plasma Science and Technology, 2020, 22 (11) : 160 - 167
  • [27] Density limit disruption prediction using a long short-term memory network on EAST
    Zhang, Kai
    Chen, Dalong
    Guo, Bihao
    Chen, Junjie
    Xiao, Bingjia
    PLASMA SCIENCE & TECHNOLOGY, 2020, 22 (11)
  • [28] Density limit disruption prediction using a long short-term memory network on EAST
    张凱
    陈大龙
    郭笔豪
    陈俊杰
    肖炳甲
    Plasma Science and Technology, 2020, (11) : 160 - 167
  • [29] State of Charge Estimation of Lithium-Ion Batteries Using Long Short-Term Memory and Bi-directional Long Short-Term Memory Neural Networks
    Namboothiri K.M.
    Sundareswaran K.
    Nayak P.S.R.
    Simon S.P.
    Journal of The Institution of Engineers (India): Series B, 2024, 105 (01) : 175 - 182
  • [30] Reduction of Noise Power by Iterative Short-Term Power Delay Profile Estimation
    Ojika, Fumiya
    Yamazato, Takaya
    Saito, Masato
    Omote, Hideki
    Sato, Akihiro
    Kimura, Sho
    Tanaka, Shoma
    Lin, Ho-Yu
    2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING, 2023,